Withings MCP Server
Enables access to Withings Health API data including body measurements, activity tracking, sleep analysis, workouts, and heart rate monitoring through OAuth2 authentication.
README
Withings MCP Server
An MCP (Model Context Protocol) server for integration with the Withings Health API. This server provides access to health data including body measurements, activities, sleep, and more.
Features
- OAuth2 Authentication with the Withings API
- Body Measurements: Weight, body fat, muscle mass, blood pressure, heart rate, SpO2, etc.
- Activity Data: Steps, calories, distance, elevation
- Sleep Data: Sleep duration, deep sleep, REM sleep, wake-up counts
- Workout Data: Training sessions and details
- Heart Rate: Intraday heart rate measurements
Installation
Option 1: Docker (Recommended)
-
Create Withings API Credentials:
- Go to Withings Developer Dashboard
- Create a new application
- Note your
Client IDandClient Secret - Set the Redirect URI to
http://localhost:8080/callback
-
Configure environment variables:
# Copy the example file
cp .env.example .env
# Edit .env and add your credentials
WITHINGS_CLIENT_ID=your_client_id_here
WITHINGS_CLIENT_SECRET=your_client_secret_here
WITHINGS_REDIRECT_URI=http://localhost:8080/callback
- Generate OAuth tokens:
# First, install locally to run token generation
python -m venv .venv
source .venv/bin/activate
pip install -e .
python generate_tokens.py
- Build and run with Docker:
# Build the image
docker build -t withings-mcp-server .
# Run with docker-compose
docker-compose up -d
Option 2: Local Python Installation
- Clone repository and install dependencies:
# Create virtual environment (recommended)
python -m venv .venv
source .venv/bin/activate # On Windows: .venv\Scripts\activate
# Install dependencies
pip install -e .
-
Create Withings API Credentials:
- Go to Withings Developer Dashboard
- Create a new application
- Note your
Client IDandClient Secret - Set the Redirect URI to
http://localhost:8080/callback
-
Configure environment variables:
# Copy the example file
cp .env.example .env
# Edit .env and add your credentials
WITHINGS_CLIENT_ID=your_client_id_here
WITHINGS_CLIENT_SECRET=your_client_secret_here
WITHINGS_REDIRECT_URI=http://localhost:8080/callback
Project Structure
withings-mcp-server/
├── src/
│ └── withings_mcp_server/
│ ├── __init__.py
│ ├── auth.py # OAuth2 authentication
│ └── server.py # MCP server implementation
├── tests/
│ ├── __init__.py
│ └── test_withings.py # Manual test script
├── generate_tokens.py # Token generation script
├── .env.example # Example environment variables
├── .gitignore
├── pyproject.toml
└── README.md
Testing the Installation
Before using the MCP server, you can verify the connection with the test script:
# Activate virtual environment if not already done
source .venv/bin/activate # On Windows: .venv\Scripts\activate
# Run the test script
python tests/test_withings.py
The test script will guide you through the OAuth flow and test various API endpoints:
- ✓ OAuth authentication
- ✓ User information
- ✓ Body measurements (last 30 days)
- ✓ Activity data (last 7 days)
- ✓ Sleep data (last 7 days)
Authentication
Before first use, you need to generate OAuth2 tokens. Tokens are automatically saved to the .env file and refreshed when needed.
Quick Start: Token Generation
Use the dedicated token generation script:
python generate_tokens.py
The script will guide you through all steps:
- ✓ Check your API credentials
- ✓ Generate the authorization URL
- ✓ Exchange the code for tokens
- ✓ Save tokens automatically to
.env - ✓ Verify tokens with a test API call
Alternative: Using Test Script
You can also use the test script which combines OAuth flow and API tests:
python tests/test_withings.py
Manual Authentication
-
Get authorization URL:
Use the
get_authorization_urltool to generate an OAuth URL -
Authenticate in browser:
Open the URL in your browser and authorize access
-
Receive authorization code:
After successful authorization, you'll be redirected to your Redirect URI with a
codeparameter -
Token management:
Access and Refresh Tokens are automatically:
- Saved to the
.envfile - Refreshed when expired
- Updated after each refresh
- Saved to the
Available Tools
get_authorization_url
Generates an OAuth2 authorization URL.
Parameters:
scope(optional): OAuth scopes (default: "user.info,user.metrics,user.activity")
get_user_info
Retrieves user information.
get_measurements
Retrieves body measurements.
Parameters:
meastype(optional): Measurement type1: Weight (kg)4: Height (m)5: Fat-free mass (kg)6: Body fat percentage (%)8: Fat mass (kg)9: Diastolic blood pressure (mmHg)10: Systolic blood pressure (mmHg)11: Heart rate (bpm)12: Temperature (°C)54: SpO2 (%)71: Body temperature (°C)76: Muscle mass (kg)88: Bone mass (kg)91: Pulse wave velocity (m/s)
category(optional): Category (1=real, 2=user_objective)startdate(optional): Start date (YYYY-MM-DD or Unix timestamp)enddate(optional): End date (YYYY-MM-DD or Unix timestamp)lastupdate(optional): Only measurements since this timestamp
get_activity
Retrieves daily activity data.
Parameters:
startdateymd(optional): Start date (YYYY-MM-DD)enddateymd(optional): End date (YYYY-MM-DD)lastupdate(optional): Only activities since this timestamp
get_sleep_summary
Retrieves sleep summary.
Parameters:
startdateymd(optional): Start date (YYYY-MM-DD)enddateymd(optional): End date (YYYY-MM-DD)lastupdate(optional): Only sleep data since this timestamp
get_sleep_details
Retrieves detailed sleep data with all sleep phases.
Parameters:
startdate(optional): Start date (YYYY-MM-DD or Unix timestamp)enddate(optional): End date (YYYY-MM-DD or Unix timestamp)
get_workouts
Retrieves workout/training sessions.
Parameters:
startdateymd(optional): Start date (YYYY-MM-DD)enddateymd(optional): End date (YYYY-MM-DD)
get_heart_rate
Retrieves heart rate measurements over a time period.
Parameters:
startdate(optional): Start date (YYYY-MM-DD or Unix timestamp)enddate(optional): End date (YYYY-MM-DD or Unix timestamp)
MCP Configuration
To use the server with Claude Desktop, add the following to your MCP configuration:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
Docker Configuration
{
"mcpServers": {
"withings": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"-e", "WITHINGS_CLIENT_ID=your_client_id",
"-e", "WITHINGS_CLIENT_SECRET=your_client_secret",
"-e", "WITHINGS_ACCESS_TOKEN=your_access_token",
"-e", "WITHINGS_REFRESH_TOKEN=your_refresh_token",
"withings-mcp-server"
]
}
}
}
Local Python Configuration
{
"mcpServers": {
"withings": {
"command": "/path/to/.venv/bin/python",
"args": ["-m", "withings_mcp_server"],
"env": {
"WITHINGS_CLIENT_ID": "your_client_id",
"WITHINGS_CLIENT_SECRET": "your_client_secret",
"WITHINGS_ACCESS_TOKEN": "your_access_token",
"WITHINGS_REFRESH_TOKEN": "your_refresh_token"
}
}
}
}
Example Usage
After configuration, you can make the following requests in Claude Desktop:
"Show me my weight measurements from the last 7 days"
"How many steps did I walk today?"
"How was my sleep quality last night?"
"Show me my heart rate data from today"
API Documentation
For more details about the Withings API:
License
MIT
Notes
- Tokens are automatically refreshed when they expire
- All dates can be specified as YYYY-MM-DD or Unix timestamp
- The API is subject to Withings rate limits (see API documentation)
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.