WinAutoWx

WinAutoWx

Enables automated WeChat operations on Windows through pywinauto, allowing users to send messages to multiple friends or groups programmatically. Provides tools for searching contacts, sending bulk messages, and controlling WeChat interface elements via MCP protocol.

Category
Visit Server

README

WinAutoWx 针对 Weixin/WeChat 自动化脚本 支持 LLM 的 MCP

本项目提供一个基于 Python + pywinauto 的自动化脚本,可在 Windows 上连接/启动微信(Weixin/WeChat),搜索好友或群聊并发送消息,支持一次性向多个好友循环发送多条消息。

交流群

赞赏

启动指令速查

  • 命令行(CLI 用法已迁移至 Debug 文档) 请参考 Debug.md 获取 run_wechat.py 的命令行用法与调试说明。

  • 启动 HTTP API 服务(FastAPI)

uvicorn server:app --host 127.0.0.1 --port 8000
  • 启动 fastmcp(MCP/stdio)服务并用 MCP Inspector 连接
python mcp_server.py
mcp-inspector --server "python mcp_server.py"

环境要求

  • Windows 10/11(64 位推荐)
  • Python 3.8–3.12(64 位推荐)
  • 已安装并登录 Windows 版微信(Weixin/WeChat)

安装

pip install -r requirements.txt

快速上手

若需要通过命令行快速发送或调试,请查看 Debug.md。以下为通过 HTTP API/MCP 的方式:

参数说明(CLI)

命令行参数表已迁移至 Debug.md

常见用法示例(CLI)

命令行示例已迁移至 Debug.md

通过 API 调用(FastAPI / fastmcp 2.0)

已提供 server.py,可作为本地服务供 AI/HTTP 调用。

  • 启动服务:
uvicorn server:app --host 127.0.0.1 --port 8000
  • 发送消息接口:POST http://127.0.0.1:8000/send
{
  "friends": ["文件传输助手"],
  "messages": ["测试一下"],
  "backend": "win32",
  "ctrl_enter": false,
  "friend_delay": 0.5,
  "message_delay": 0.2,
  "no_launch": false,
  "verbose": true
}
  • 导出控件接口:POST http://127.0.0.1:8000/dump
{
  "backend": "win32",
  "verbose": true
}

说明:脚本主体位于 script/wechat_sender.py。命令行使用说明见 Debug.md;HTTP 接口由 server.py 提供。

通过 fastmcp(MCP/stdio 协议)

已提供 mcp_server.py(基于 fastmcp 2.0)。它是一个 MCP 服务器,通过标准输入输出(stdio)对外暴露工具。内部会把工具调用转发到上面的 HTTP 服务。

  1. 安装依赖并启动 HTTP 服务:
pip install -r requirements.txt
uvicorn server:app --host 127.0.0.1 --port 8000
  1. 启动 MCP 服务器(stdio):
python mcp_server.py
  1. -用 MCP Inspector 连接:-(废弃)
mcp-inspector --server "python mcp_server.py"

工具说明:

  • send_messages(friends, messages, backend='uia'|'win32', ctrl_enter=False, friend_delay=0.5, message_delay=0.2, no_launch=False, verbose=False)
  • dump_controls(backend='uia'|'win32', verbose=True)

可用环境变量:

  • WEIXIN_API_URL:转发的 HTTP 服务地址(默认 http://127.0.0.1:8000

MCP Inspector 配置

  1. 先启动 HTTP 服务(新终端):
uvicorn server:app --host 127.0.0.1 --port 8000

npx @modelcontextprotocol/inspector

  1. 在 MCP Inspector 中填写:
  • Server command:
python mcp_server.py
  • Working Directory:
D:\代码存储\winautowx
  • Environment variables(可选):
    • WEIXIN_API_URL: http://127.0.0.1:8000
  • Arguments: 留空
  • Transport: 默认 stdio(保持不变)
  • 点击 Connect
  1. 在 Inspector 中调用 tools:
  • send_messages 示例参数:
{
  "friends": ["文件传输助手"],
  "messages": ["测试一下"],
  "backend": "win32",
  "ctrl_enter": false,
  "friend_delay": 0.5,
  "message_delay": 0.2,
  "no_launch": false,
  "verbose": true
}
  • dump_controls 示例参数:
{
  "backend": "win32",
  "verbose": true
}

使用建议

  • 保持微信主窗口处于当前桌面且未最小化。
  • 先用“文件传输助手”验证流程,避免打扰他人。
  • 若你的微信版本为新版 Weixin(进程 Weixin.exe),脚本已适配。
  • 特殊布局或企业微信可能与控件结构不同,遇到问题请开 --verbose 并将输出粘贴给我。

免责声明

  • 此脚本仅用于学习与个人效率用途。请遵守相关平台使用条款,避免滥用自动化操作。

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured