
Wikidata MCP Server
A server implementation for interacting with Wikidata API using the Model Context Protocol, providing tools for searching identifiers, extracting metadata, and executing SPARQL queries.
Tools
search_entity
Search for a Wikidata entity ID by its query. Args: query (str): The query to search for. The query should be unambiguous enough to uniquely identify the entity. Returns: str: The Wikidata entity ID corresponding to the given query."
search_property
Search for a Wikidata property ID by its query. Args: query (str): The query to search for. The query should be unambiguous enough to uniquely identify the property. Returns: str: The Wikidata property ID corresponding to the given query."
get_properties
Get the properties associated with a given Wikidata entity ID. Args: entity_id (str): The entity ID to retrieve properties for. This should be a valid Wikidata entity ID. Returns: list: A list of property IDs associated with the given entity ID. If no properties are found, an empty list is returned.
execute_sparql
Execute a SPARQL query on Wikidata. You may assume the following prefixes: PREFIX wd: <http://www.wikidata.org/entity/> PREFIX wdt: <http://www.wikidata.org/prop/direct/> PREFIX p: <http://www.wikidata.org/prop/> PREFIX ps: <http://www.wikidata.org/prop/statement/> Args: sparql_query (str): The SPARQL query to execute. Returns: str: The JSON-formatted result of the SPARQL query execution. If there are no results, an empty JSON object will be returned.
get_metadata
Retrieve the English label and description for a given Wikidata entity ID. Args: entity_id (str): The entity ID to retrieve metadata for. language (str): The language code for the label and description (default is "en"). Use ISO 639-1 codes. Returns: dict: A dictionary containing the label and description of the entity, if available.
README
Wikidata MCP Server
A server implementation for Wikidata API using the Model Context Protocol (MCP). This project provides tools to interact with Wikidata, such as searching identifiers (entity and property), extracting metadata (label and description) and executing sparql query.
Installation
Install uv
if it is not installed yet.
$ curl -LsSf https://astral.sh/uv/install.sh | sh
Then, install dependencies.
$ git clone https://github.com/zzaebok/mcp-wikidata.git
$ cd mcp-wikidata
$ uv sync
# if you want to run client example together
$ uv sync --extra example
Run
Run the server with:
$ uv run src/server.py
If you want to test it with a simple client code (with langchain-mcp-adapters
), run the client with:
# in another shell
$ uv run src/client.py
The LLM extracts valid entity and property identifiers, executes a sparql query, and finally recommend a movie directed by Bong Joon-ho.
<details> <summary><i>See the execution output</i></summary>
{
"messages": [
HumanMessage(
content="Can you recommend me a movie directed by Bong Joonho?",
),
AIMessage(
tool_calls=[
{
"name": "search_entity",
"args": {"query": "Bong Joon-ho"},
}
],
),
ToolMessage(
content="Q495980",
name="search_entity",
),
AIMessage(
tool_calls=[
{
"name": "get_properties",
"args": {"entity_id": "Q495980"},
}
],
),
ToolMessage(
content='["P345", "P244", "P214", "P227", ...]',
name="get_properties",
),
AIMessage(
tool_calls=[
{
"name": "search_property",
"args": {"query": "director"},
}
],
),
ToolMessage(
content="P57",
name="search_property",
),
AIMessage(
tool_calls=[
{
"name": "execute_sparql",
"args": {
"sparql_query": 'SELECT ?film ?filmLabel WHERE {\n ?film wdt:P57 wd:Q495980.\n SERVICE wikibase:label { bd:serviceParam wikibase:language "en". }\n} LIMIT 1'
},
}
],
),
ToolMessage(
content='[{"film": {"type": "uri", "value": "http://www.wikidata.org/entity/Q483761"}, "filmLabel": {"xml:lang": "en", "type": "literal", "value": "Mother"}}]',
name="execute_sparql",
),
AIMessage(
content='I recommend the movie "Mother," which was directed by Bong Joon-ho.',
),
]
}
</details>
Wikidata MCP Tools
The following tools are implemented in the server:
Tool | Description |
---|---|
search_entity(query: str) |
Search for a Wikidata entity ID by its query. |
search_property(query: str) |
Search for a Wikidata property ID by its query. |
get_properties(entity_id: str) |
Get the properties associated with a given Wikidata entity ID. |
execute_sparql(sparql_query: str) |
Execute a SPARQL query on Wikidata. |
get_metadata(entity_id: str, language: str = "en") |
Retrieve the English label and description for a given Wikidata entity ID. |
License
MIT License
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.