Wiki MCP Server

Wiki MCP Server

An MCP Server implementation that enables managing Confluence wiki pages through natural language queries, supporting operations like creating, updating, deleting, and searching pages across different knowledge bases.

Category
Visit Server

README

📚 Wiki MCP Server

An MCP (Model Context Protocol) Server implementation for managing Confluence wiki pages.

Supports:

  • Creating new wiki pages
  • Updating existing wiki pages
  • Deleting wiki pages
  • Searching wiki pages by keyword
  • Auto-selecting correct Confluence knowledge base (alm, wpb, etc.) based on user query

Built with FastAPI, following MCP Server Best Practices, and ready for production deployment.


🚀 Tech Stack

  • Python 3.10+
  • FastAPI
  • MCP SDK
  • Requests (for Confluence API interaction)
  • ContextVars (for session management)

📦 Project Structure

wiki_mcp_server/
├── src/wiki_mcp_server/
│   ├── server.py          # MCP server entry point
│   ├── service.py         # Business logic (Confluence API interactions)
│   ├── tools.py           # MCP tool definitions
│   ├── prompts.py         # MCP prompt definitions
│   ├── resources.py       # MCP resource definitions
│   ├── utils.py           # Helper functions (wiki_type inference etc.)
│   ├── utils/session_context.py  # Session context manager
│   └── middleware.py      # Authentication and session initialization middleware
├── Dockerfile             # Container configuration
├── requirements.txt       # Python dependencies
├── README.md              # Project documentation
├── smithery.yaml          # Smithery integration config (optional)
└── pyproject.toml         # Python project metadata

⚙️ Installation

  1. Clone the repository:
git clone https://your-repo-url/wiki_mcp_server.git
cd wiki_mcp_server
  1. Install dependencies:
pip install -r requirements.txt
  1. (Optional) Configure your environment variables if needed.

🛠 Running Locally

Run the server:

cd src
uvicorn wiki_mcp_server.server:app --host 0.0.0.0 --port 9999 --reload

After startup, you can visit:


🧪 Example Request

Headers Required:

Key Example Value
user_name john.doe@domain.com
alm_confluence_base_url https://your-confluence-site/wiki/rest/api
alm_confluence_api_token your-api-token
wpb_confluence_base_url (optional if available)
wpb_confluence_api_token (optional if available)

⚠️ If headers are missing or invalid, server will return HTTP 400 error.


Example: Create Page

POST /create_page

{
  "space_key": "TEST",
  "title": "Test Page Created by MCP Server",
  "content": "<p>Hello, World!</p>",
  "user_query": "Please create a page in GSNA knowledge base."
}

Behavior:

  • Server will infer wiki_type=alm from user_query.
  • Create the page in Confluence and return page metadata.

🧠 Auto Inference Logic

  • If the query mentions gsna, global, alm-confluencealm
  • If the query mentions wpb, wealthwpb
  • Otherwise default to alm

(You can also manually specify wiki_type in input)


🐳 Docker (Optional)

Build and run containerized server:

docker build -t wiki-mcp-server .
docker run -d -p 9999:9999 --name wiki-mcp-server wiki-mcp-server

📜 License

MIT License.


📞 Contact

For issues or collaboration requests, please contact:

  • Developer: Shawn
  • Email: gsqasxb@gmail.com
  • Project maintained by internal MCP Working Group

---# wiki_mcp_server

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured