WebSurfer MCP

WebSurfer MCP

A Model Context Protocol server that enables AI assistants to securely fetch and extract readable text content from web pages through a standardized interface.

Category
Visit Server

README

🌐 WebSurfer MCP

A powerful Model Context Protocol (MCP) server that enables Large Language Models (LLMs) to fetch and extract readable text content from web pages. This tool provides a secure, efficient, and feature-rich way for AI assistants to access web content through a standardized interface.

✨ Features

  • 🔒 Secure URL Validation: Blocks dangerous schemes, private IPs, and localhost domains
  • 📄 Smart Content Extraction: Extracts clean, readable text from HTML pages using advanced parsing
  • ⚡ Rate Limiting: Built-in rate limiting to prevent abuse (60 requests/minute)
  • 🛡️ Content Type Filtering: Only processes supported content types (HTML, plain text, XML)
  • 📏 Size Limits: Configurable content size limits (default: 10MB)
  • ⏱️ Timeout Management: Configurable request timeouts with validation
  • 🔧 Comprehensive Error Handling: Detailed error messages for various failure scenarios
  • 🧪 Full Test Coverage: 45+ unit tests covering all functionality

🏗️ Architecture

The project consists of several key components:

Core Components

  • MCPURLSearchServer: Main MCP server implementation
  • TextExtractor: Handles web content fetching and text extraction
  • URLValidator: Validates and sanitizes URLs for security
  • Config: Centralized configuration management

Key Features

  • Async/Await: Built with modern Python async patterns for high performance
  • Resource Management: Proper cleanup of network connections and resources
  • Context Managers: Safe resource handling with automatic cleanup
  • Logging: Comprehensive logging for debugging and monitoring

🚀 Installation

Prerequisites

  • Python 3.12 or higher
  • uv package manager (recommended)

Quick Start

  1. Clone the repository:

    git clone https://github.com/crybo-rybo/websurfer-mcp
    cd websurfer-mcp
    
  2. Install dependencies:

    uv sync
    
  3. Verify installation:

    uv run python -c "import mcp_url_search_server; print('Installation successful!')"
    

🎯 Usage

Starting the MCP Server

The server communicates via stdio (standard input/output) and can be integrated with any MCP-compatible client.

# Start the server
uv run run_server.py serve

# Start with custom log level
uv run run_server.py serve --log-level DEBUG

Testing URL Search Functionality

Test the URL search functionality directly:

# Test with a simple URL
uv run run_server.py test --url "https://example.com"

# Test with custom timeout
uv run run_server.py test --url "https://httpbin.org/html" --timeout 15

Example Test Output

{
  "success": true,
  "url": "https://example.com",
  "title": "Example Domain",
  "content_type": "text/html",
  "status_code": 200,
  "text_length": 1250,
  "text_preview": "Example Domain This domain is for use in illustrative examples in documents..."
}

🛠️ Configuration

The server can be configured using environment variables:

Variable Default Description
MCP_DEFAULT_TIMEOUT 10 Default request timeout in seconds
MCP_MAX_TIMEOUT 60 Maximum allowed timeout in seconds
MCP_USER_AGENT MCP-URL-Search-Server/1.0.0 User agent string for requests
MCP_MAX_CONTENT_LENGTH 10485760 Maximum content size in bytes (10MB)

Example Configuration

export MCP_DEFAULT_TIMEOUT=15
export MCP_MAX_CONTENT_LENGTH=5242880  # 5MB
uv run run_server.py serve

🧪 Testing

Running All Tests

# Run all tests with verbose output
uv run python -m unittest discover tests -v

# Run tests with coverage (if coverage is installed)
uv run coverage run -m unittest discover tests
uv run coverage report

Running Specific Test Files

# Run only integration tests
uv run python -m unittest tests.test_integration -v

# Run only text extraction tests
uv run python -m unittest tests.test_text_extractor -v

# Run only URL validation tests
uv run python -m unittest tests.test_url_validator -v

Test Results

All 45 tests should pass successfully:

test_content_types_immutable (test_config.TestConfig.test_content_types_immutable) ... ok
test_default_configuration_values (test_config.TestConfig.test_default_configuration_values) ... ok
test_404_error_handling (test_integration.TestMCPURLSearchIntegration.test_404_error_handling) ... ok
...
----------------------------------------------------------------------
Ran 45 tests in 1.827s

OK

🔧 Development

Project Structure

websurfer-mcp/
├── mcp_url_search_server.py  # Main MCP server implementation
├── text_extractor.py         # Web content extraction logic
├── url_validator.py          # URL validation and security
├── config.py                 # Configuration management
├── run_server.py             # Command-line interface
├── run_tests.py              # Test runner utilities
├── tests/                    # Test suite
│   ├── test_integration.py   # Integration tests
│   ├── test_text_extractor.py # Text extraction tests
│   ├── test_url_validator.py # URL validation tests
│   └── test_config.py        # Configuration tests
├── pyproject.toml            # Project configuration
└── README.md                 # This file

🔒 Security Features

URL Validation

  • Scheme Blocking: Blocks file://, javascript:, ftp:// schemes
  • Private IP Protection: Blocks access to private IP ranges (10.x.x.x, 192.168.x.x, etc.)
  • Localhost Protection: Blocks localhost and local domain access
  • URL Length Limits: Prevents extremely long URLs
  • Format Validation: Ensures proper URL structure

Content Safety

  • Content Type Filtering: Only processes supported text-based content types
  • Size Limits: Configurable maximum content size (default: 10MB)
  • Rate Limiting: Prevents abuse with configurable limits
  • Timeout Protection: Configurable request timeouts

📊 Performance

  • Async Processing: Non-blocking I/O for high concurrency
  • Connection Pooling: Efficient HTTP connection reuse
  • DNS Caching: Reduces DNS lookup overhead
  • Resource Cleanup: Automatic cleanup prevents memory leaks

🙏 Acknowledgments


Happy web surfing with your AI assistant! 🚀

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured