WebScraping.AI MCP Server
A Model Context Protocol (MCP) server implementation that integrates with WebScraping.AI for web data extraction capabilities.
webscraping-ai
README
WebScraping.AI MCP Server
A Model Context Protocol (MCP) server implementation that integrates with WebScraping.AI for web data extraction capabilities.
Features
- Question answering about web page content
- Structured data extraction from web pages
- HTML content retrieval with JavaScript rendering
- Plain text extraction from web pages
- CSS selector-based content extraction
- Multiple proxy types (datacenter, residential) with country selection
- JavaScript rendering using headless Chrome/Chromium
- Concurrent request management with rate limiting
- Custom JavaScript execution on target pages
- Device emulation (desktop, mobile, tablet)
- Account usage monitoring
Installation
Running with npx
env WEBSCRAPING_AI_API_KEY=your_api_key npx -y webscraping-ai-mcp
Manual Installation
# Clone the repository
git clone https://github.com/webscraping-ai/webscraping-ai-mcp-server.git
cd webscraping-ai-mcp-server
# Install dependencies
npm install
# Run
npm start
Running on Cursor
Configuring Cursor 🖥️ Note: Requires Cursor version 0.45.6+
To configure WebScraping.AI MCP in Cursor:
- Open Cursor Settings
- Go to Features > MCP Servers
- Click "+ Add New MCP Server"
- Enter the following:
- Name: "webscraping-ai-mcp" (or your preferred name)
- Type: "command"
- Command:
env WEBSCRAPING_AI_API_KEY=your-api-key npx -y webscraping-ai-mcp
If you are using Windows and are running into issues, try
cmd /c "set WEBSCRAPING_AI_API_KEY=your-api-key && npx -y webscraping-ai-mcp"
Replace your-api-key
with your WebScraping.AI API key.
Running on Claude Desktop
Add this to your claude_desktop_config.json
:
{
"mcpServers": {
"mcp-server-webscraping-ai": {
"command": "npx",
"args": ["-y", "webscraping-ai-mcp"],
"env": {
"WEBSCRAPING_AI_API_KEY": "YOUR_API_KEY_HERE",
"WEBSCRAPING_AI_CONCURRENCY_LIMIT": "5"
}
}
}
}
Configuration
Environment Variables
Required
WEBSCRAPING_AI_API_KEY
: Your WebScraping.AI API key- Required for all operations
- Get your API key from WebScraping.AI
Concurrency Configuration
WEBSCRAPING_AI_CONCURRENCY_LIMIT
: Maximum number of concurrent requests (default:5
)
Configuration Examples
For standard usage with custom concurrency setting:
# Required
export WEBSCRAPING_AI_API_KEY=your-api-key
# Optional
export WEBSCRAPING_AI_CONCURRENCY_LIMIT=10 # Increase concurrency limit
Available Tools
1. Question Tool (webscraping_ai_question
)
Ask questions about web page content.
{
"name": "webscraping_ai_question",
"arguments": {
"url": "https://example.com",
"question": "What is the main topic of this page?",
"timeout": 30000,
"js": true,
"js_timeout": 2000,
"wait_for": ".content-loaded",
"proxy": "datacenter",
"country": "us"
}
}
Example response:
{
"content": [
{
"type": "text",
"text": "The main topic of this page is examples and documentation for HTML and web standards."
}
],
"isError": false
}
2. Fields Tool (webscraping_ai_fields
)
Extract structured data from web pages based on instructions.
{
"name": "webscraping_ai_fields",
"arguments": {
"url": "https://example.com/product",
"fields": {
"title": "Extract the product title",
"price": "Extract the product price",
"description": "Extract the product description"
},
"js": true,
"timeout": 30000
}
}
Example response:
{
"content": [
{
"type": "text",
"text": {
"title": "Example Product",
"price": "$99.99",
"description": "This is an example product description."
}
}
],
"isError": false
}
3. HTML Tool (webscraping_ai_html
)
Get the full HTML of a web page with JavaScript rendering.
{
"name": "webscraping_ai_html",
"arguments": {
"url": "https://example.com",
"js": true,
"timeout": 30000,
"wait_for": "#content-loaded"
}
}
Example response:
{
"content": [
{
"type": "text",
"text": "<html>...[full HTML content]...</html>"
}
],
"isError": false
}
4. Text Tool (webscraping_ai_text
)
Extract the visible text content from a web page.
{
"name": "webscraping_ai_text",
"arguments": {
"url": "https://example.com",
"js": true,
"timeout": 30000
}
}
Example response:
{
"content": [
{
"type": "text",
"text": "Example Domain\nThis domain is for use in illustrative examples in documents..."
}
],
"isError": false
}
5. Selected Tool (webscraping_ai_selected
)
Extract content from a specific element using a CSS selector.
{
"name": "webscraping_ai_selected",
"arguments": {
"url": "https://example.com",
"selector": "div.main-content",
"js": true,
"timeout": 30000
}
}
Example response:
{
"content": [
{
"type": "text",
"text": "<div class=\"main-content\">This is the main content of the page.</div>"
}
],
"isError": false
}
6. Selected Multiple Tool (webscraping_ai_selected_multiple
)
Extract content from multiple elements using CSS selectors.
{
"name": "webscraping_ai_selected_multiple",
"arguments": {
"url": "https://example.com",
"selectors": ["div.header", "div.product-list", "div.footer"],
"js": true,
"timeout": 30000
}
}
Example response:
{
"content": [
{
"type": "text",
"text": [
"<div class=\"header\">Header content</div>",
"<div class=\"product-list\">Product list content</div>",
"<div class=\"footer\">Footer content</div>"
]
}
],
"isError": false
}
7. Account Tool (webscraping_ai_account
)
Get information about your WebScraping.AI account.
{
"name": "webscraping_ai_account",
"arguments": {}
}
Example response:
{
"content": [
{
"type": "text",
"text": {
"requests": 5000,
"remaining": 4500,
"limit": 10000,
"resets_at": "2023-12-31T23:59:59Z"
}
}
],
"isError": false
}
Common Options for All Tools
The following options can be used with all scraping tools:
timeout
: Maximum web page retrieval time in ms (15000 by default, maximum is 30000)js
: Execute on-page JavaScript using a headless browser (true by default)js_timeout
: Maximum JavaScript rendering time in ms (2000 by default)wait_for
: CSS selector to wait for before returning the page contentproxy
: Type of proxy, datacenter or residential (residential by default)country
: Country of the proxy to use (US by default). Supported countries: us, gb, de, it, fr, ca, es, ru, jp, kr, incustom_proxy
: Your own proxy URL in "http://user:password@host:port" formatdevice
: Type of device emulation. Supported values: desktop, mobile, tableterror_on_404
: Return error on 404 HTTP status on the target page (false by default)error_on_redirect
: Return error on redirect on the target page (false by default)js_script
: Custom JavaScript code to execute on the target page
Error Handling
The server provides robust error handling:
- Automatic retries for transient errors
- Rate limit handling with backoff
- Detailed error messages
- Network resilience
Example error response:
{
"content": [
{
"type": "text",
"text": "API Error: 429 Too Many Requests"
}
],
"isError": true
}
Integration with LLMs
This server implements the Model Context Protocol, making it compatible with any MCP-enabled LLM platforms. You can configure your LLM to use these tools for web scraping tasks.
Example: Configuring Claude with MCP
// Example code for connecting Claude with the WebScraping.AI MCP Server
const { Claude } = require('@anthropic-ai/sdk');
const { McpClient } = require('@modelcontextprotocol/sdk/client');
const claude = new Claude({
apiKey: 'your_claude_api_key'
});
const mcpClient = new McpClient({
baseUrl: 'http://localhost:3000/sse'
});
// Now you can use Claude with WebScraping.AI tools
const response = await claude.messages.create({
model: 'claude-3-opus-20240229',
max_tokens: 1000,
system: 'You have access to WebScraping.AI tools for web data extraction.',
messages: [
{ role: 'user', content: 'Extract the main heading from https://example.com' }
],
tools: await mcpClient.listTools()
});
Development
# Clone the repository
git clone https://github.com/webscraping-ai/webscraping-ai-mcp-server.git
cd webscraping-ai-mcp-server
# Install dependencies
npm install
# Run tests
npm test
# Add your .env file
cp .env.example .env
# Start the inspector
npx @modelcontextprotocol/inspector node src/index.js
Contributing
- Fork the repository
- Create your feature branch
- Run tests:
npm test
- Submit a pull request
License
MIT License - see LICENSE file for details
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
MCP Package Docs Server
Facilitates LLMs to efficiently access and fetch structured documentation for packages in Go, Python, and NPM, enhancing software development with multi-language support and performance optimization.
Claude Code MCP
An implementation of Claude Code as a Model Context Protocol server that enables using Claude's software engineering capabilities (code generation, editing, reviewing, and file operations) through the standardized MCP interface.
@kazuph/mcp-taskmanager
Model Context Protocol server for Task Management. This allows Claude Desktop (or any MCP client) to manage and execute tasks in a queue-based system.
Linear MCP Server
Enables interaction with Linear's API for managing issues, teams, and projects programmatically through the Model Context Protocol.
mermaid-mcp-server
A Model Context Protocol (MCP) server that converts Mermaid diagrams to PNG images.
Jira-Context-MCP
MCP server to provide Jira Tickets information to AI coding agents like Cursor

Linear MCP Server
A Model Context Protocol server that integrates with Linear's issue tracking system, allowing LLMs to create, update, search, and comment on Linear issues through natural language interactions.

Sequential Thinking MCP Server
This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.