Weather MCP Server
Enables AI assistants to retrieve real-time weather data and 5-day forecasts for any city using the OpenWeather API, supporting both metric and imperial units.
README
Weather MCP Server - Sample Implementation
Reference implementation for ASUS and OEM partners
A simple, production-ready MCP server demonstrating how to integrate external services with AI PCs using the Model Context Protocol.
🎯 Purpose
This sample MCP server demonstrates:
- ✅ How to create an MCP server from scratch
- ✅ How to expose tools (functions) to AI clients
- ✅ How to integrate external APIs (OpenWeather API)
- ✅ Production-ready error handling
- ✅ Clean, well-documented code
Perfect for: OEM partners building AI PC features, developers learning MCP, proof-of-concept projects
🌟 Features
Available Tools
-
get_current_weather- Get real-time weather for any city- Temperature, conditions, humidity, wind speed
- Supports both Celsius and Fahrenheit
-
get_weather_forecast- Get 5-day forecast- Daily high/low temperatures
- Weather conditions per day
🚀 Quick Start
Prerequisites
- Node.js >= 18.0.0
- OpenWeather API key (free tier available)
Installation
# Clone or download this repository
cd weather-mcp-server
# Install dependencies
npm install
# Configure API key
cp .env.example .env
# Edit .env and add your OpenWeather API key
Get API Key
- Visit OpenWeather API
- Sign up for free account
- Generate API key
- Add to
.envfile
Run the Server
# Start the server
npm start
# Or with auto-reload during development
npm run dev
📖 Usage Examples
Configure in Claude Desktop
Add to your claude_desktop_config.json:
{
"mcpServers": {
"weather": {
"command": "node",
"args": ["/absolute/path/to/weather-mcp-server/index.js"],
"env": {
"OPENWEATHER_API_KEY": "your_api_key_here"
}
}
}
}
Test with AI Client
Once configured, you can ask your AI assistant:
"What's the weather like in Taipei?"
"Give me a 5-day forecast for Tokyo"
"What's the temperature in New York in Fahrenheit?"
The AI will automatically call the appropriate MCP tools!
🏗️ Architecture
┌─────────────────┐
│ AI Client │ (Claude, ChatGPT, etc.)
│ (Claude Desktop)│
└────────┬────────┘
│ MCP Protocol (stdio)
↓
┌─────────────────┐
│ Weather MCP │ ← This server
│ Server │
└────────┬────────┘
│ HTTPS
↓
┌─────────────────┐
│ OpenWeather API │
└─────────────────┘
Key Components
index.js- Main server implementation@modelcontextprotocol/sdk- Official MCP SDKStdioServerTransport- Communicates via stdin/stdoutOpenWeather API- External weather data source
📁 Project Structure
weather-mcp-server/
├── package.json # Dependencies and scripts
├── index.js # Main MCP server code
├── .env.example # Environment variables template
├── .env # Your API keys (git-ignored)
├── README.md # This file
├── README.zh-TW.md # 繁體中文版
├── PARTNER-GUIDE.md # Detailed guide for OEM partners
└── examples/
└── client-example.js # Example client code
🛠️ Development
Code Structure
The server is organized into clear sections:
- Configuration - API keys, URLs
- WeatherServer Class - Main server logic
- Tool Registration - Define available tools
- Tool Handlers - Implement tool functionality
- Error Handling - Robust error management
Adding New Tools
// 1. Add tool definition in setupToolHandlers()
{
name: 'your_new_tool',
description: 'What this tool does',
inputSchema: {
type: 'object',
properties: {
param1: { type: 'string', description: 'Parameter description' }
},
required: ['param1']
}
}
// 2. Add handler in CallToolRequestSchema
case 'your_new_tool':
return await this.yourNewTool(args.param1);
// 3. Implement the method
async yourNewTool(param1) {
// Your logic here
return {
content: [{
type: 'text',
text: 'Result'
}]
};
}
🧪 Testing
Manual Testing
# Test the MCP server directly
npm test
Integration Testing
Use the included examples/client-example.js to test tool calls programmatically.
📝 API Reference
Tool: get_current_weather
Parameters:
city(string, required) - City name (e.g., "Taipei", "Tokyo")units(string, optional) - "metric" (default) or "imperial"
Returns:
🌤️ Current Weather in Taipei, TW
Temperature: 25.3°C (feels like 26.1°C)
Condition: Clear - clear sky
Humidity: 65%
Wind Speed: 3.2 m/s
Pressure: 1013 hPa
Visibility: 10.0 km
Last updated: 11/14/2025, 10:30:00 AM
Tool: get_weather_forecast
Parameters:
city(string, required) - City nameunits(string, optional) - "metric" (default) or "imperial"
Returns:
📅 5-Day Weather Forecast for Taipei, TW
11/14/2025:
High: 26.5°C | Low: 22.1°C
Condition: Clear
11/15/2025:
High: 27.2°C | Low: 23.4°C
Condition: Clouds
...
🔒 Security Best Practices
Implemented in this sample:
- ✅ API keys stored in environment variables (not in code)
- ✅ Input validation for all parameters
- ✅ Proper error handling (no sensitive data leakage)
- ✅ HTTPS for external API calls
- ✅ Minimal dependencies (reduces attack surface)
For production deployments:
- 🔐 Use secrets management system (AWS Secrets Manager, Azure Key Vault)
- 🔐 Implement rate limiting
- 🔐 Add request logging/monitoring
- 🔐 Use TLS for MCP communication if deployed remotely
🌐 Localization
This server supports multiple languages through the OpenWeather API:
// Add language parameter to API call
const url = `${API_BASE_URL}/weather?q=${city}&units=${units}&lang=zh_tw&appid=${API_KEY}`;
Supported languages: en, zh_tw, zh_cn, ja, ko, and 50+ more
🐛 Troubleshooting
Common Issues
"City not found"
- Check spelling of city name
- Try including country code: "Taipei,TW"
"Weather API error: Unauthorized"
- Verify your API key in
.env - Check API key is active at openweathermap.org
"Module not found"
- Run
npm install - Check Node.js version >= 18.0.0
MCP server not detected in Claude
- Verify
claude_desktop_config.jsonpath - Restart Claude Desktop
- Check server logs for errors
📚 Learn More
MCP Resources
Weather API
🤝 For OEM Partners
See PARTNER-GUIDE.md for:
- Detailed integration guide
- Deployment options
- Customization examples
- Production checklist
- Support information
Contact: partners@irisgo.ai
📄 License
MIT License - see LICENSE file
🙏 Credits
- Created by: IrisGo.AI Team
- MCP Protocol: Anthropic
- Weather Data: OpenWeather
- For: ASUS and AI PC OEM partners
📮 Support
- Issues: GitHub Issues
- Email: support@irisgo.ai
- Documentation: docs.irisgo.ai
Last Updated: 2025-11-14 Version: 1.0.0
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.