
Weather MCP Server
A Model Context Protocol compatible server that provides weather information for any city using Ollama's LLM capabilities through an exposed get-weather tool.
README
🌦️ Weather MCP Server Demo
A Model Context Protocol (MCP) compatible server that provides weather information using Ollama's LLM capabilities. This server exposes a get-weather
tool that can be used by MCP clients to retrieve weather information for any city.
🛠 Prerequisites
- Node.js v18+
- Ollama installed and running locally
- Ollama model:
llama3
(or configure your preferred model)
🚀 Complete Setup & Installation
✅ Step 1: Clone and Install
git clone https://github.com/codewith1984/weather-mcp-server-typescript.git
cd weather-mcp-server
npm install
⚙️ Step 2: Setup Environment
# Copy environment template
cp .env.example .env
####Edit the .env file to contain: OLLAMA_API_URL=http://localhost:11434/api/generate OLLAMA_MODEL=llama3
🤖 Step 3: Install and Setup Ollama
# Install Ollama (if not already installed)
# Visit https://ollama.com/ for installation instructions
# Start Ollama service
ollama serve
# In another terminal, pull the model
ollama pull llama3
# Verify Ollama is working
curl http://localhost:11434/api/version
Step 4: Test Ollama Connection
# Test if Ollama can generate responses
curl http://localhost:11434/api/generate -d '{
"model": "llama3",
"prompt": "Hello world",
"stream": false
}'
Step 5: Run Diagnostics
# Run diagnostic to check if everything is working
npm run diagnose
🎯 Running the MCP Server
Start the Server
npm start
Expected output:
🚀 MCP Weather Server starting... 📡 Ollama URL: http://localhost:11434/api/generate 🤖 Model: llama3 ✅ MCP Server connected and ready!
🔍 Testing with MCP Inspector
Method 1: CLI Inspector
# Install MCP Inspector globally
npm install -g @modelcontextprotocol/inspector
# Run inspector
mcp-inspector
# Follow the web interface instructions
⚙️ Configuration
Environment Variables (.env file)
OLLAMA_API_URL=http://localhost:11434/api/generate
OLLAMA_MODEL=llama3
Performance Tuning
The server is optimized for quick responses:
15-second timeout for HTTP requests Aggressive Ollama parameters for faster generation Fallback from HTTP API to CLI if needed
##🔧 Troubleshooting
Quick Diagnosis
# Run the diagnostic script
npm run diagnose
Common Issues & Solutions
Issue: "Request timed out" errors
# Check if Ollama is running
ps aux | grep ollama
# Start Ollama if not running
ollama serve
# Check if model is available
ollama list | grep llama3
# If model not found, pull it
ollama pull llama3
Issue: "Request timed out" errors
# Check if Ollama is running
ps aux | grep ollama
# Start Ollama if not running
ollama serve
# Check if model is available
ollama list | grep llama3
# If model not found, pull it
ollama pull llama3
Issue: "Model not found" errors
# List available models
ollama list
# Pull the required model
ollama pull llama3
# Or try a smaller model for faster responses
ollama pull llama3:8b
Issue: Connection errors
# Verify Ollama is accessible
curl http://localhost:11434/api/version
# Check if port 11434 is open
netstat -an | grep 11434
# Restart Ollama service
pkill ollama
ollama serve
Issue: MCP Inspector connection fails
# Make sure your server is running
npm start
# Check the working directory path is correct
pwd
# Verify tsx is available
npm list tsx
Performance Tips
# Use a smaller model for faster responses
ollama pull llama3:8b
# Update .env to use the smaller model
echo "OLLAMA_MODEL=llama3:8b" >> .env
# Monitor system resources
top -p $(pgrep ollama)
📁 Project Structure
weather-mcp-server/ ├── .env # Environment configuration ├── .env.example # Environment template ├── .gitignore # Git ignore rules ├── main.ts # MCP server implementation ├── ollamaClient.ts # Ollama API client ├── diagnose.ts # Diagnostic tool ├── package.json # Dependencies and scripts ├── tsconfig.json # TypeScript configuration └── README.md # This file
✅ Success Checklist
Complete this checklist to ensure everything is working:
Node.js v18+ installed Ollama installed and running (ollama serve) Model downloaded (ollama pull llama3) Project dependencies installed (npm install) Environment configured (.env file exists) Diagnostic passes (npm run diagnose) MCP server starts successfully (npm start) MCP Inspector connects successfully Weather tool responds to test quer
🚀 Quick Start Commands
# Complete setup in one go
git clone https://github.com/your-username/weather-mcp-server.git
cd weather-mcp-server
npm install
cp .env.example .env
ollama serve &
ollama pull llama3
npm run diagnose
npm start
🤝 Contributing
- Fork the repository
- Create a feature branch: git checkout -b feature-name
- Make your changes
- Test with MCP Inspector
- Submit a pull request
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.