watsonx MCP Server

watsonx MCP Server

Enables Claude to delegate tasks to IBM watsonx.ai foundation models (Granite, Llama, Mistral) for text generation, chat, embeddings, and document analysis. Supports two-agent architectures where Claude can leverage IBM's enterprise AI capabilities for specialized workloads.

Category
Visit Server

README

watsonx MCP Server

MCP server for IBM watsonx.ai integration with Claude Code. Enables Claude to delegate tasks to IBM's foundation models (Granite, Llama, Mistral, etc.).

Features

  • Text Generation - Generate text using watsonx.ai foundation models
  • Chat - Have conversations with watsonx.ai chat models
  • Embeddings - Generate text embeddings
  • Model Listing - List all available foundation models

Available Tools

Tool Description
watsonx_generate Generate text using watsonx.ai models
watsonx_chat Chat with watsonx.ai models
watsonx_embeddings Generate text embeddings
watsonx_list_models List available models

Setup

1. Install Dependencies

cd ~/watsonx-mcp-server
npm install

2. Configure Environment

Set these environment variables:

WATSONX_API_KEY=your-ibm-cloud-api-key
WATSONX_URL=https://us-south.ml.cloud.ibm.com
WATSONX_SPACE_ID=your-deployment-space-id  # Recommended: deployment space
WATSONX_PROJECT_ID=your-project-id          # Alternative: project ID

Note: Either WATSONX_SPACE_ID or WATSONX_PROJECT_ID is required for text generation, embeddings, and chat. Deployment spaces are recommended as they have Watson Machine Learning (WML) pre-configured.

3. Add to Claude Code

The MCP server is already configured in ~/.claude.json:

{
  "mcpServers": {
    "watsonx": {
      "type": "stdio",
      "command": "node",
      "args": ["/Users/matthewkarsten/watsonx-mcp-server/index.js"],
      "env": {
        "WATSONX_API_KEY": "your-api-key",
        "WATSONX_URL": "https://us-south.ml.cloud.ibm.com",
        "WATSONX_SPACE_ID": "your-deployment-space-id"
      }
    }
  }
}

Usage

Once configured, Claude can use watsonx.ai tools:

User: Use watsonx to generate a haiku about coding

Claude: [Uses watsonx_generate tool]
Result: Code flows like water
       Bugs arise, then disappear
       Programs come alive

Available Models

Some notable models available:

  • ibm/granite-3-3-8b-instruct - IBM Granite 3.3 8B (recommended)
  • ibm/granite-13b-chat-v2 - IBM Granite chat model
  • ibm/granite-3-8b-instruct - Granite 3 instruct model
  • meta-llama/llama-3-70b-instruct - Meta's Llama 3 70B
  • mistralai/mistral-large - Mistral AI large model
  • ibm/slate-125m-english-rtrvr-v2 - Embedding model

Use watsonx_list_models to see all available models.

Architecture

Claude Code (Opus 4.5)
         │
         └──▶ watsonx MCP Server
                    │
                    └──▶ IBM watsonx.ai API
                              │
                              ├── Granite Models
                              ├── Llama Models
                              ├── Mistral Models
                              └── Embedding Models

Two-Agent System

This enables a two-agent architecture where:

  1. Claude (Opus 4.5) - Primary reasoning agent, handles complex tasks
  2. watsonx.ai - Secondary agent for specific workloads

Claude can delegate tasks to watsonx.ai when:

  • IBM-specific model capabilities are needed
  • Running batch inference on enterprise data
  • Using specialized Granite models
  • Generating embeddings for RAG pipelines

IBM Cloud Resources

This MCP server uses:

  • Service: watsonx.ai Studio (data-science-experience)
  • Plan: Lite (free tier)
  • Region: us-south

Create your own watsonx.ai project and deployment space in IBM Cloud.

Integration with IBM Z MCP Server

This watsonx MCP server works alongside the IBM Z MCP server:

Claude Code (Opus 4.5)
         │
         ├──▶ watsonx MCP Server
         │         └── Text generation, embeddings, chat
         │
         └──▶ ibmz MCP Server
                   └── Key Protect HSM, z/OS Connect

Demo scripts in the ibmz-mcp-server:

  • demo-full-stack.js - Full 5-service pipeline
  • demo-rag.js - RAG with watsonx embeddings + Granite

Document Analyzer

The document analyzer (document-analyzer.js) provides powerful tools for analyzing your external drive data using watsonx.ai:

Commands

# View document catalog (9,168 documents)
node document-analyzer.js catalog

# Summarize a document
node document-analyzer.js summarize 1002519.txt

# Analyze document type, topics, entities
node document-analyzer.js analyze 1002519.txt

# Ask questions about a document
node document-analyzer.js question 1002519.txt 'What AWS credentials are needed?'

# Generate embeddings for documents
node document-analyzer.js embed

# Semantic search across documents
node document-analyzer.js search 'IBM Cloud infrastructure'

Features

  • Summarization: Generate concise summaries of any document
  • Analysis: Extract document type, topics, entities, and sentiment
  • Q&A: Ask natural language questions about document content
  • Embeddings: Generate 768-dimensional vectors for semantic search
  • Semantic Search: Find similar documents using vector similarity

Demo

Run the full demo:

./demo-external-drive.sh

Embedding Index & RAG

The embedding-index.js tool provides semantic search and RAG (Retrieval Augmented Generation):

# Build an embedding index (50 documents)
node embedding-index.js build 50

# Semantic search
node embedding-index.js search 'cloud infrastructure'

# RAG query - retrieves relevant docs and generates answer
node embedding-index.js rag 'How do I set up AWS for Satellite?'

# Show index statistics
node embedding-index.js stats

Batch Processor

The batch-processor.js tool processes multiple documents at once:

# Classify documents into categories
node batch-processor.js classify 20

# Extract topics from documents
node batch-processor.js topics 15

# Generate one-line summaries
node batch-processor.js summarize 10

# Full analysis (classify + topics + summary)
node batch-processor.js full 10

Categories: technical, business, creative, personal, code, legal, marketing, educational, other

Files

  • index.js - MCP server implementation
  • document-analyzer.js - Document analysis CLI tool
  • embedding-index.js - Embedding index and RAG tool
  • batch-processor.js - Batch document processor
  • demo-external-drive.sh - Demo script
  • package.json - Dependencies
  • README.md - This file

Author

Matthew Karsten

License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured