WaterCrawl MCP

WaterCrawl MCP

Provides AI systems with web crawling, scraping, and search capabilities through WaterCrawl's API, enabling content extraction, site mapping, and web search with customizable options.

Category
Visit Server

README

WaterCrawl MCP

A Model Context Protocol (MCP) server for WaterCrawl, built with FastMCP. This package provides AI systems with web crawling, scraping, and search capabilities through a standardized interface.

Quick Start with npx (No Installation)

Use WaterCrawl MCP directly without installation using npx:

npx @watercrawl/mcp --api-key YOUR_API_KEY

Using with AI Assistants

Codeium/Windsurf

Configure your Codeium or Windsurf with this package without installing it:

{
  "mcpServers": {
    "watercrawl": {
      "command": "npx",
      "args": [
        "@watercrawl/mcp",
        "--api-key",
        "YOUR_API_KEY",
        "--base-url",
        "https://app.watercrawl.dev"
      ]
    }
  }
}

Claude Desktop

Run WaterCrawl MCP in SSE mode:

npx @watercrawl/mcp sse --port 3000 --endpoint /sse --api-key YOUR_API_KEY

Then configure Claude Desktop to connect to your SSE server.

Command-line Options

  • -b, --base-url <url>: WaterCrawl API base URL (default: https://app.watercrawl.dev)
  • -k, --api-key <key>: Required, your WaterCrawl API key
  • -h, --help: Display help information
  • -V, --version: Display version information

SSE mode additional options:

  • -p, --port <number>: Port for the SSE server (default: 3000)
  • -e, --endpoint <path>: SSE endpoint path (default: /sse)

Development and Contribution

Project Structure

wc-mcp/
├── src/                   # Source code
│   ├── cli/               # Command-line interface
│   ├── config/            # Configuration management
│   ├── mcp/               # MCP implementation
│   ├── services/          # WaterCrawl API services
│   └── tools/             # MCP tools implementation
├── tests/                 # Test suite
├── dist/                  # Compiled JavaScript
├── tsconfig.json          # TypeScript configuration
├── package.json           # npm package configuration
└── README.md              # This file

Setup for Development

  1. Clone the repository and install dependencies:
git clone https://github.com/watercrawl/watercrawl-mcp
cd watercrawl-mcp
npm install
  1. Build the project:
npm run build
  1. Link the package for local development:
npm link @watercrawl/mcp

Contribution Guidelines

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/your-feature)
  3. Commit your changes (git commit -m 'Add your feature')
  4. Push to the branch (git push origin feature/your-feature)
  5. Open a Pull Request

Installation (Alternative to npx)

Global Installation

npm install -g @watercrawl/mcp

Local Installation

npm install @watercrawl/mcp

Configuration

Configure WaterCrawl MCP using environment variables or command-line parameters.

Environment Variables

Create a .env file or set environment variables:

WATERCRAWL_BASE_URL=https://app.watercrawl.dev
WATERCRAWL_API_KEY=YOUR_API_KEY
SSE_PORT=3000                  # Optional, for SSE mode
SSE_ENDPOINT=/sse              # Optional, for SSE mode

Available Tools

The WaterCrawl MCP server provides the following tools:

1. scrape-url

Scrape content from a URL with customizable options.

{
  "url": "https://example.com",
  "pageOptions": {
    "exclude_tags": ["script", "style"],
    "include_tags": ["p", "h1", "h2"],
    "wait_time": 1000,
    "only_main_content": true,
    "include_html": false,
    "include_links": true,
    "timeout": 15000,
    "accept_cookies_selector": ".cookies-accept-button",
    "locale": "en-US",
    "extra_headers": {
      "User-Agent": "Custom User Agent"
    },
    "actions": [
      {"type": "screenshot"},
      {"type": "pdf"}
    ]
  },
  "sync": true,
  "download": true
}

2. search

Search the web using WaterCrawl.

{
  "query": "artificial intelligence latest developments",
  "searchOptions": {
    "language": "en",
    "country": "us",
    "time_range": "recent",
    "search_type": "web",
    "depth": "deep"
  },
  "resultLimit": 5,
  "sync": true,
  "download": true
}

3. download-sitemap

Download a sitemap from a crawl request in different formats.

{
  "crawlRequestId": "uuid-of-crawl-request",
  "format": "json" // or "graph" or "markdown"
}

4. manage-crawl

Manage crawl requests: list, get details, stop, or download results.

{
  "action": "list", // or "get", "stop", "download"
  "crawlRequestId": "uuid-of-crawl-request", // for get, stop, and download actions
  "page": 1,
  "pageSize": 10
}

5. manage-search

Manage search requests: list, get details, or stop running searches.

{
  "action": "list", // or "get", "stop"
  "searchRequestId": "uuid-of-search-request", // for get and stop actions
  "page": 1,
  "pageSize": 10,
  "download": true
}

6. monitor-request

Monitor a crawl or search request in real-time, with timeout control.

{
  "type": "crawl", // or "search"
  "requestId": "uuid-of-request",
  "timeout": 30, // in seconds
  "download": true
}

License

ISC

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured