Waferlock Robot MCP
Enables interaction with Waferlock Robot services through a public REST API bridge. Provides secure access to robot management functionality without exposing AWS credentials, supporting local MCP server deployment via CLI.
README
Waferlock MCP CLI (Public)
這個專案提供一個獨立的 CLI,透過 Waferlock Robot MCP 在 Heroku 上的公開 REST API,將資料橋接到支援 Model Context Protocol (MCP) 的客戶端(例如 ChatGPT Desktop)。使用者只需要 API URL 與 Token,即可在本地啟動 stdio 版 MCP 伺服器,不需暴露 AWS 憑證。
安裝與使用
1. 取得程式碼
git clone https://github.com/jasonlcs/waferlock-robot-mcp-public.git
cd waferlock-robot-mcp-public
2. 編譯
npm install
npm run build
3. 直接執行 (本地調試)
node dist/cli.js \
--api-url https://waferlock-robot-mcp-1177c207c107.herokuapp.com \
--api-token <你的 API Token> \
--mcp-token <選填:要求 MCP 客戶端提供的 Token>
--server-name:覆寫 MCP server 名稱--server-version:覆寫 MCP server 版本--mcp-token:若指定,MCP 客戶端必須提供同樣的 Token(透過環境變數或連線設定)
4. 透過 npx 執行 (Git 來源)
建立 tag 後(例如 git tag v1.0.0 && git push origin v1.0.0),即可提供使用者以下指令:
npx --yes github:jasonlcs/waferlock-robot-mcp-public#v1.0.0 \
--api-url https://waferlock-robot-mcp-1177c207c107.herokuapp.com \
--api-token <你的 API Token> \
--mcp-token <選填>
5. ChatGPT Desktop 設定範例
{
"mcpServers": {
"waferlock-robot": {
"command": "npx",
"args": [
"--yes",
"github:jasonlcs/waferlock-robot-mcp-public#v1.0.0",
"--api-url", "https://waferlock-robot-mcp-1177c207c107.herokuapp.com",
"--api-token", "<你的 API Token>",
"--mcp-token", "<選填>"
]
}
}
}
將 jasonlcs、waferlock-robot-mcp-1177c207c107、<你的 API Token> 改成實際值即可使用。
專案結構
waferlock-robot-mcp-public/
├── package.json
├── tsconfig.json
├── README.md
└── src
├── cli.ts
└── services
├── manualApiProvider.ts
├── manualProvider.ts
└── mcpService.ts
開發注意事項
- 需要 Node.js 18+(提供原生
fetch)。 - CLI 會優先讀取命令列參數(
--api-url、--api-token等),若未提供則回退至環境變數API_URL、API_TOKEN、MCP_TOKEN。 - 內建
dotenv,會載入.env(選用)。 - 專案使用 TypeScript;若想讓使用者省去編譯步驟,可在 repo 中同步
dist/,或加上 npmprepare腳本在安裝時自動編譯。
後續步驟
npm run build確認dist/生成。必要時chmod +x dist/cli.js。git add . && git commit -m "Initial public CLI",再git push -u origin main。- 建立版本 tag(例:
git tag v1.0.0 && git push origin v1.0.0)。 - 在主專案或文件提到此 CLI,指引用法(
npx github:...或node dist/cli.js ...)。
授權
ISC License
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.