VSGuard MCP

VSGuard MCP

Provides real-time OWASP ASVS security guidance and vulnerability scanning for AI coding agents. Enables proactive security during code generation by checking security requirements, scanning code for vulnerabilities, and suggesting secure code fixes.

Category
Visit Server

README

VSGuard MCP - Vulnerability Scanner & Guard

A production-ready Model Context Protocol (MCP) server that provides real-time OWASP ASVS security guidance and vulnerability scanning for AI coding agents.

VSGuard = Vulnerability Scanner + Guard - Powered by FastMCP 2.0

🎯 Overview

This MCP server integrates with Claude Desktop, Cursor, and other MCP-compatible tools to enable proactive security during code generation. It helps AI agents write secure code from the start by providing:

  • 📋 OWASP ASVS Requirements - Real-time security guidance based on ASVS v4.0
  • 🔍 Vulnerability Scanning - Static analysis using Semgrep with custom ASVS rules
  • 🛠️ Secure Code Fixes - Actionable remediation with code examples
  • 🤖 LLM-Optimized Output - Formatted for maximum comprehension by AI agents

✨ Features

Three Core Tools

  1. check_security_requirements - Get relevant ASVS requirements before writing code
  2. scan_code - Analyze code for vulnerabilities with ASVS mappings
  3. suggest_fix - Generate secure code alternatives with explanations

Security Coverage

  • ✅ Authentication (ASVS Chapter 2)
  • ✅ Session Management (ASVS Chapter 3)
  • ✅ Access Control (ASVS Chapter 4)
  • ✅ Input Validation & Injection Prevention (ASVS Chapter 5)
  • ✅ Cryptography (ASVS Chapters 6-9)
  • ✅ Data Protection

Supported Languages

  • Python (primary)
  • JavaScript/TypeScript
  • Java, Go, Ruby, PHP, C/C++, C#, Rust (via Semgrep)

🚀 Quick Start

Prerequisites

  • Python 3.11+
  • pip or Poetry
  • Semgrep (for scanning)

Installation

# Clone repository
git clone https://github.com/yourname/vsguard-mcp
cd vsguard-mcp

# Install dependencies
pip install -e .

# Or with Poetry
poetry install

# Install Semgrep
pip install semgrep

Running the Server

# Run directly with FastMCP
python src/server.py

# Or use FastMCP CLI
fastmcp run src/server.py

# Or with Poetry
poetry run python src/server.py

Configure Claude Desktop

Add to ~/Library/Application Support/Claude/claude_desktop_config.json:

{
  "mcpServers": {
    "vsguard": {
      "command": "python",
      "args": ["/absolute/path/to/vsguard-mcp/src/server.py"]
    }
  }
}

Or with Poetry:

{
  "mcpServers": {
    "vsguard": {
      "command": "poetry",
      "args": ["run", "python", "/absolute/path/to/vsguard-mcp/src/server.py"]
    }
  }
}

Or use FastMCP CLI (simplest):

{
  "mcpServers": {
    "vsguard": {
      "command": "fastmcp",
      "args": ["run", "/absolute/path/to/vsguard-mcp/src/server.py"]
    }
  }
}

Restart Claude Desktop to load the server.

📖 Usage Examples

Example 1: Get Security Requirements

In Claude Desktop:

I need to create a user login endpoint. What security requirements should I follow?

Claude will call:

check_security_requirements(
    code_type="authentication",
    language="python"
)

Response:

# OWASP ASVS Security Requirements

## Level 1 Requirements (8)

### 2.1.1: Password Security
**Requirement:** Verify that user set passwords are at least 12 characters in length.

**Implementation Guide:**
- Add validation during user registration and password change
- Reject passwords shorter than 12 characters
- Consider allowing longer passwords (64+ chars)

**Code Example:**
```python
def validate_password_length(password: str) -> bool:
    if len(password) < 12:
        raise ValueError("Password must be at least 12 characters")
    return True

[... more requirements ...]


### Example 2: Scan Code for Vulnerabilities

**In Claude Desktop:**

Can you check this code for security issues?

def login(username, password): query = f"SELECT * FROM users WHERE username = '{username}'" cursor.execute(query)


**Claude will call:**
```python
scan_code(
    code="""def login(username, password):
    query = f"SELECT * FROM users WHERE username = '{username}'"
    cursor.execute(query)""",
    language="python"
)

Response:

**SCAN FAILED**

**Total Findings:** 1
- 🟠 **HIGH:** 1

**ASVS Requirements Violated:** 5.3.4, 5.3.5

## Detailed Findings

### 1. 🟠 SQL Injection
**Severity:** HIGH
**ASVS Requirements:** 5.3.4, 5.3.5

**Issue:**
SQL injection vulnerability detected. User input is concatenated directly into SQL query.

**Location:** input.py:line 2

**Vulnerable Code:**
```python
query = f"SELECT * FROM users WHERE username = '{username}'"

Remediation: Use parameterized queries with placeholders instead of string concatenation.

Example:

cursor.execute("SELECT * FROM users WHERE username = ?", (username,))

### Example 3: Get Secure Code Fix

**In Claude Desktop:**

How do I fix this SQL injection vulnerability?


**Claude will call:**
```python
suggest_fix(
    vulnerable_code="cursor.execute(f'SELECT * FROM users WHERE id = {user_id}')",
    vulnerability_type="sql_injection",
    language="python"
)

Response:

# Security Fix Suggestion

**ASVS Requirements Addressed:** 5.3.4, 5.3.5

## ❌ Vulnerable Code
```python
cursor.execute(f"SELECT * FROM users WHERE id = {user_id}")

✅ Secure Code

cursor.execute("SELECT * FROM users WHERE id = ?", (user_id,))

# Or with SQLAlchemy ORM:
from sqlalchemy import select
stmt = select(User).where(User.username == username)
user = session.execute(stmt).scalar_one_or_none()

📝 Explanation

Use parameterized queries (prepared statements) instead of string concatenation.

🛡️ Security Benefits

  • Prevents SQL injection attacks
  • Separates code from data

## 🏗️ Project Structure

vsguard-mcp/ ├── src/ │ ├── server.py # MCP server entry point │ ├── config.py # Configuration │ ├── models.py # Pydantic data models │ │ │ ├── asvs/ │ │ ├── loader.py # Load ASVS from YAML │ │ ├── mapper.py # Map findings to ASVS │ │ └── requirements.py # Requirement models │ │ │ ├── scanners/ │ │ ├── base.py # Abstract scanner │ │ └── semgrep_scanner.py # Semgrep integration │ │ │ ├── fixes/ │ │ ├── generator.py # Fix generator │ │ └── templates.py # Fix templates │ │ │ └── utils/ │ └── formatters.py # LLM-optimized formatting │ ├── data/ │ ├── asvs/ # ASVS requirements (YAML) │ │ ├── authentication.yaml │ │ ├── session_management.yaml │ │ ├── validation.yaml │ │ └── cryptography.yaml │ │ │ └── rules/ # Custom Semgrep rules │ ├── authentication.yaml │ ├── injection.yaml │ ├── cryptography.yaml │ └── session.yaml │ └── tests/ # Test suite


## ⚙️ Configuration

Create a `.env` file (optional):

```env
# ASVS settings
MIN_ASVS_LEVEL=1

# Scanner settings
ENABLE_SEMGREP=true
SCAN_TIMEOUT=30
MAX_CODE_SIZE=50000

# Logging
LOG_LEVEL=INFO

🧪 Testing

# Run tests
pytest tests/

# Run specific test
pytest tests/test_asvs_loader.py

# With coverage
pytest --cov=src tests/

📊 Coverage

Current implementation includes:

  • 40+ ASVS Requirements across authentication, session management, input validation, and cryptography
  • 25+ Custom Semgrep Rules detecting common vulnerabilities
  • 10+ Fix Templates with secure code examples
  • Multiple Languages supported (Python, JavaScript, TypeScript, etc.)

Vulnerability Detection

  • SQL Injection (ASVS 5.3.4, 5.3.5)
  • Cross-Site Scripting (ASVS 5.3.3, 5.3.10)
  • Weak Password Validation (ASVS 2.1.1, 2.1.7)
  • Weak Cryptography (ASVS 6.2.2, 6.2.5)
  • Hardcoded Secrets (ASVS 2.3.1, 14.3.3)
  • Session Management Issues (ASVS 3.x)
  • XML External Entity (XXE) (ASVS 5.5.2)
  • Command Injection (ASVS 5.3.4)
  • And more...

🎓 How It Works

1. ASVS Requirements Database

The server loads OWASP ASVS v4.0 requirements from structured YAML files:

requirements:
  - id: "2.1.1"
    level: 1
    category: "Password Security"
    requirement: "Verify that user set passwords are at least 12 characters in length."
    cwe: "CWE-521"
    description: "Passwords should be sufficiently long..."
    implementation_guide: "Add validation during registration..."
    code_examples:
      - |
        if len(password) < 12:
            raise ValueError("Too short")

2. Static Analysis with Semgrep

Custom Semgrep rules detect ASVS violations:

rules:
  - id: asvs-5-3-4-sql-injection
    pattern: cursor.execute(f"... {$VAR} ...")
    message: "ASVS 5.3.4: SQL injection vulnerability"
    severity: ERROR
    metadata:
      asvs_id: "5.3.4"
      cwe: "CWE-89"

3. Intelligent Mapping

Findings are automatically mapped to ASVS requirements by:

  • Vulnerability type (sql_injection → ASVS 5.3.4)
  • CWE ID (CWE-89 → ASVS 5.3.4, 5.3.5)
  • Code patterns (login endpoints → authentication requirements)

4. LLM-Optimized Output

All responses are formatted for maximum LLM comprehension:

  • Clear structure with headers and sections
  • Code examples with syntax highlighting
  • Severity indicators (🔴 🟠 🟡)
  • Actionable remediation steps
  • ASVS requirement references

🔧 Extending the Server

Add New ASVS Requirements

Create/edit YAML files in data/asvs/:

requirements:
  - id: "X.Y.Z"
    level: 1
    category: "Your Category"
    requirement: "Requirement text"
    cwe: "CWE-XXX"
    description: "Detailed explanation"
    implementation_guide: "How to implement"
    code_examples:
      - "Example code"

Add Custom Semgrep Rules

Create YAML files in data/rules/:

rules:
  - id: custom-rule-id
    patterns:
      - pattern: vulnerable_pattern()
    message: "Vulnerability description"
    severity: ERROR
    metadata:
      asvs_id: "X.Y.Z"
      cwe: "CWE-XXX"
      remediation: "How to fix"

Add Fix Templates

Edit src/fixes/templates.py:

FIX_TEMPLATES = {
    "vulnerability_type": {
        "python": {
            "vulnerable": "# Bad code",
            "secure": "# Good code",
            "explanation": "Why it's better",
            "asvs_requirements": ["X.Y.Z"],
        }
    }
}

🤝 Contributing

Contributions welcome! Areas for improvement:

  1. More ASVS Requirements - Cover additional chapters
  2. More Languages - Expand language support
  3. More Scanners - Integrate Bandit, detect-secrets
  4. Better AI Integration - Improve LLM output formatting
  5. Performance - Optimize scanning speed

⚡ Powered By

  • FastMCP 2.0 - Modern Python framework for MCP servers
  • Semgrep - Static analysis engine
  • OWASP ASVS - Security verification standard

📝 License

MIT License - see LICENSE file for details.

🔗 Resources

🙏 Acknowledgments

  • OWASP for the ASVS standard
  • Anthropic for the MCP protocol
  • Semgrep for the scanning engine

📧 Support

For issues, questions, or contributions, please open an issue on GitHub.


Built with ❤️ for secure AI-assisted development

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured