Vertica MCP Server
Enables AI assistants to query and explore Vertica databases through natural language with readonly protection by default. Supports SQL execution, schema discovery, large dataset streaming, and Vertica-specific optimizations like projection awareness.
README
Vertica MCP Server
A Model Context Protocol (MCP) server for Vertica databases. Enables AI assistants to query and explore Vertica databases through natural language.
Safety-first design: Readonly mode by default. Write operations require explicit configuration.
Features
- 6 MCP Tools: Query execution, streaming, schema discovery
- Readonly Protection: Only SELECT/SHOW/DESCRIBE/EXPLAIN/WITH queries by default
- Large Dataset Streaming: Efficient batch processing (up to 1M rows)
- Vertica-Optimized: Projection awareness, columnar query support
- Production Ready: Connection pooling, SSL support, timeout configuration
- Parameter Binding: SQL injection protection
Quick Start
Claude Code
claude mcp add vertica --scope user -- npx -y @hechtcarmel/vertica-mcp@latest --env-file /path/to/your/.env
Create your .env file with connection details:
VERTICA_HOST=your-vertica-host.com
VERTICA_PORT=5433
VERTICA_DATABASE=your_database
VERTICA_USER=your_username
VERTICA_PASSWORD=your_password
Cursor
- Create environment file
~/.cursor/vertica.env:
VERTICA_HOST=your-vertica-host.com
VERTICA_PORT=5433
VERTICA_DATABASE=your_database
VERTICA_USER=your_username
VERTICA_PASSWORD=your_password
- Configure
~/.cursor/mcp.json:
{
"mcpServers": {
"vertica-mcp": {
"command": "npx",
"args": [
"@hechtcarmel/vertica-mcp",
"--env-file",
"/Users/yourusername/.cursor/vertica.env"
]
}
}
}
- Restart Cursor
Claude Desktop
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%/Claude/claude_desktop_config.json
{
"mcpServers": {
"vertica-mcp": {
"command": "npx",
"args": [
"@hechtcarmel/vertica-mcp",
"--env-file",
"/path/to/your/.env"
]
}
}
}
Configuration
Required Variables
VERTICA_HOST # Database hostname
VERTICA_DATABASE # Database name
VERTICA_USER # Username
Optional Variables
VERTICA_PORT=5433 # Default: 5433
VERTICA_PASSWORD # Password (optional)
VERTICA_READONLY_MODE=true # Default: true
VERTICA_CONNECTION_LIMIT=10 # Default: 10 (max: 100)
VERTICA_QUERY_TIMEOUT=60000 # Default: 60000ms
VERTICA_SSL=false # Default: false
VERTICA_SSL_REJECT_UNAUTHORIZED=true # Default: true
VERTICA_DEFAULT_SCHEMA=public # Default: public
Enabling Write Operations
To allow INSERT/UPDATE/DELETE/CREATE/DROP operations:
VERTICA_READONLY_MODE=false
Warning: Only disable readonly mode if you understand the implications.
Available Tools
Query Execution
- execute_query: Execute SQL with optional parameters
- stream_query: Handle large datasets with configurable batching
Schema Discovery
- get_table_structure: Table columns, types, constraints
- list_tables: All tables in schema with metadata
- list_views: All views with definitions
- list_indexes: Vertica projections for optimization
Usage Examples
Query Data
SELECT customer_state, COUNT(*) as count
FROM customer_dimension
GROUP BY customer_state
ORDER BY count DESC
LIMIT 10;
Explore Schema
SHOW TABLES;
DESCRIBE customer_dimension;
Analyze Performance
EXPLAIN SELECT * FROM store_sales_fact
WHERE sale_date_key > '2023-01-01';
Stream Large Results
When querying large datasets, use the stream_query tool:
- Default batch size: 1000 rows
- Configurable batch size: 1-10,000 rows
- Maximum rows: 1,000,000
Troubleshooting
Connection Failed
# Test connectivity directly
vsql -h localhost -p 5433 -d VMart -U dbadmin
Verify:
- Host and port are reachable
- Database credentials are correct
- User has required permissions
Permission Errors
- User needs SELECT permissions on tables
- User needs access to system catalogs (
v_catalog.*)
Query Timeouts
Increase timeout for complex queries:
VERTICA_QUERY_TIMEOUT=300000 # 5 minutes
Large Result Sets
Use stream_query instead of execute_query for queries returning >10,000 rows.
Requirements
- Node.js >= 18.0.0
- Vertica database (any recent version)
- Network access to Vertica server
Support
- Issues: GitHub Issues
- Releases: GitHub Releases
License
MIT License - see LICENSE file.
Acknowledgments
This project's architecture and tool design are based on mcp-vertica by @nolleh.
Current Version: 1.3.5
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.