Veo 3.1 MCP Server

Veo 3.1 MCP Server

Enables high-quality AI video generation using Google's Veo 3.1 model for text-to-video, style-guided, and frame-interpolation tasks. It features token-efficient reference image handling, batch processing, and video extension capabilities with built-in cost estimation.

Category
Visit Server

README

🎬 Veo 3.1 MCP Server

Token-Efficient AI Video Generation with Google's Veo 3.1

🎯 What is This?

An MCP server for Google's Veo 3.1 - the state-of-the-art AI video generation model. Generate stunning videos from text prompts, reference images, or interpolate between first/last frames.

Key Features

  • Text-to-Video - Generate videos from descriptions
  • Reference Images - Up to 3 images for style guidance
  • Frame Interpolation - First + last frame → coherent video
  • Video Extension - Extend Veo-generated videos
  • Batch Generation - Generate multiple videos with concurrency control
  • Cost Estimation - Know costs before generating
  • Token-Efficient - Auto-upload refs to Files API (97% token savings!)

🚀 Quick Start

1. Installation

cd veo-mcp
npm install
npm run build

2. Get API Key

  1. Go to Google AI Studio
  2. Create API key
  3. Enable Veo 3.1 in your project (billing required)

3. Configure

cp environment.template .env
# Edit .env and add your key

4. Add to Cursor

Add to ~/.cursor/mcp.json:

{
  "mcpServers": {
    "veo": {
      "command": "node",
      "args": ["C:\\Users\\woute\\Githubs\\MCP\\veo-mcp\\dist\\index.js"],
      "env": {
        "GEMINI_API_KEY": "your_api_key_here"
      }
    }
  }
}

Restart Cursor. Done! ✅


🛠️ Tools

1. start_video_generation - Generate Video

Basic text-to-video:

{
  "prompt": "A serene Zen garden at sunrise, cherry blossoms falling, cinematic"
}

With reference images (token-efficient!):

{
  "prompt": "A futuristic cityscape at night, neon lights",
  "referenceImages": [{
    "source": "url",
    "url": "https://example.com/style.jpg"
  }],
  "durationSeconds": 8,
  "resolution": "1080p"
}

First/last frame interpolation:

{
  "prompt": "Smooth transition between these scenes",
  "firstFrame": {
    "source": "file_path",
    "filePath": "C:\\first.jpg"
  },
  "lastFrame": {
    "source": "file_path",
    "filePath": "C:\\last.jpg"
  }
}

Parameters:

  • model - veo-3.1-generate-001 (quality) or veo-3.1-fast-generate-001 (speed)
  • durationSeconds - 4, 6, or 8
  • aspectRatio - 16:9 or 9:16
  • resolution - 720p or 1080p
  • generateAudio - Include synchronized audio (2x cost)
  • seed - For reproducibility
  • sampleCount - Generate 1-4 videos

2. get_video_job - Check Status

{
  "operationName": "operations/xyz"
}

Returns status and video URLs when complete.

3. upload_image - Pre-Upload References

{
  "source": "file_path",
  "filePath": "C:\\style-ref.jpg"
}

Returns fileUri valid for 48 hours. Reuse across multiple generations!

4. extend_video - Extend Videos

{
  "videoFileUri": "files/abc123",
  "additionalSeconds": 7,
  "prompt": "Continue with the character walking into the sunset"
}

5. start_batch_video_generation - Batch Generate

{
  "jobs": [
    {"key": "scene1", "request": {"prompt": "..."}},
    {"key": "scene2", "request": {"prompt": "..."}}
  ],
  "concurrency": 3
}

6. estimate_veo_cost - Cost Estimation

{
  "model": "veo-3.1-fast-generate-001",
  "durationSeconds": 8,
  "sampleCount": 1,
  "generateAudio": false
}

Returns estimated cost in USD.


💰 Pricing

Model Video Only Video + Audio
veo-3.1-generate-001 (quality) $0.20/sec $0.40/sec
veo-3.1-fast-generate-001 (speed) $0.10/sec $0.15/sec

Example Costs:

  • 8s video (fast, no audio): $0.80
  • 8s video (quality, with audio): $3.20
  • 4s video (fast, no audio): $0.40

📊 Limits & Constraints

Parameter Limit
Duration 4, 6, or 8 seconds
Reference images 0-3 images
Sample count 1-4 videos
Resolutions 720p, 1080p
Aspect ratios 16:9, 9:16
Rate limit ~50 requests/min

💡 Usage Examples

Simple Text-to-Video

Generate an 8-second video of a peaceful forest scene with morning mist

With Style Reference

Create a video of a tech startup office, using this image for style: C:\ref.jpg

Frame Interpolation

Generate a smooth transition between first.jpg and last.jpg, 8 seconds, cinematic camera movement

Batch Generation

Generate 5 different video variations of a product showcase with different angles

🔍 How Token Efficiency Works

❌ Naive Approach (Base64)

{
  "referenceImages": [{
    "base64": "iVBORw0KGgo..." // 500KB → ~50,000 tokens!
  }]
}

Cost: Massive token usage per call

✅ Token-Efficient (This MCP)

{
  "referenceImages": [{
    "source": "url",
    "url": "https://example.com/ref.jpg" // ~20 tokens
  }]
}

What Happens:

  1. Server downloads image (no tokens)
  2. Computes SHA-256 hash
  3. Checks cache (48h validity)
  4. Uploads to Files API if needed (~1s)
  5. Uses short files/abc123 URI (~5 tokens)

Savings: 97%+ fewer tokens! 🎉


⏱️ Generation Times

Configuration Typical Time
4s, 720p, no audio 30-60 sec
8s, 1080p, no audio 60-120 sec
8s, 1080p, with audio 90-150 sec
With references +10-30 sec
Frame interpolation +20-40 sec

Note: Times vary based on prompt complexity and server load.


🎨 Best Practices

1. Start Small, Scale Up

Step 1: Generate 1 video at 720p
Step 2: If good, regenerate at 1080p
Step 3: Use batch for variations

2. Use Fast Model for Testing

{
  "model": "veo-3.1-fast-generate-001",  // Testing
  "resolution": "720p"
}

Switch to quality model for final:

{
  "model": "veo-3.1-generate-001",  // Final
  "resolution": "1080p"
}

3. Pre-Upload Frequently Used References

// Step 1: Upload once
upload_image {"source": "file_path", "filePath": "brand-style.jpg"}
// Returns: files/xyz123

// Step 2: Reuse many times
{
  "referenceImages": [{"source": "file_uri", "fileUri": "files/xyz123"}]
}

4. Leverage Batch for Variations

{
  "jobs": [
    {"key": "v1", "request": {"prompt": "Scene 1...", "seed": 1}},
    {"key": "v2", "request": {"prompt": "Scene 1...", "seed": 2}},
    {"key": "v3", "request": {"prompt": "Scene 1...", "seed": 3}}
  ]
}

5. Monitor Costs

Always estimate before large batches:

estimate_veo_cost {
  "model": "veo-3.1-fast-generate-001",
  "durationSeconds": 8,
  "sampleCount": 10
}
// Returns: $8.00 estimate

🎬 Async Operation Flow

Veo uses async long-running operations:

1. start_video_generation
   ↓ Returns operationName immediately
   
2. get_video_job (poll every 10-30s)
   ↓ Returns {done: false, status: "RUNNING"}
   
3. get_video_job (after 60-120s)
   ↓ Returns {done: true, videos: [{videoUri: "..."}]}
   
4. Download video from videoUri

Tip: Don't poll too frequently (< 10s intervals).


🆘 Troubleshooting

"API not enabled" (403)

  1. Go to Google Cloud Console
  2. Enable "Generative Language API"
  3. Enable billing
  4. Wait 5-10 minutes for propagation

"Rate limit exceeded"

  • Veo allows ~50 requests/min
  • Use batch tool with concurrency: 3
  • Add delays between requests

"Invalid aspect ratio with references"

  • 9:16 may not work with reference images
  • Use 16:9 for reference mode
  • Check Veo 3.1 docs for updates

"Video extension failed"

  • Only Veo-generated videos can be extended
  • Cannot extend arbitrary MP4s
  • Input must be from previous Veo job

Long generation times

  • 1080p takes longer than 720p
  • Audio generation adds time
  • Reference images add processing
  • Frame interpolation is slowest

📚 Resources


🎯 Status: Production Ready ✅

  • ✅ All 6 tools implemented
  • ✅ Token-efficient file handling
  • ✅ Async operation support
  • ✅ Batch generation with concurrency control
  • ✅ Cost estimation
  • ✅ Comprehensive validation
  • ✅ Error handling
  • ✅ Full documentation

Ready to generate amazing videos! 🚀


Built with 🎬 for AI video generation

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured