Velero MCP Server

Velero MCP Server

Provides read-only access to Velero backup and schedule resources in Kubernetes clusters, enabling AI agents to inspect backups, schedules, and generate Velero YAML manifests safely without write permissions.

Category
Visit Server

README

Velero MCP Server

The Velero MCP Server is an open-source Model Context Protocol (MCP) server that exposes read-only, safe, structured access to Velero backup and schedule resources running inside any Kubernetes cluster.

It allows AI agents (ChatGPT, Claude, Cursor, GitHub Copilot, etc.) to:

  • πŸ” Inspect Velero backups
  • πŸ”„ Inspect Velero schedules
  • πŸ“„ Generate Velero Backup YAML manifests
  • 🧩 Access Velero data as MCP resources
  • πŸ” Safely interact with your cluster in read-only mode

This project helps platform engineers automate workflows using AI while ensuring zero-risk, low-privilege, and read-only access to critical cluster configuration.


⭐ Why This Project Exists

Velero is commonly used for:

  • Kubernetes namespace & cluster backups
  • Disaster recovery
  • Cluster migrations
  • Persistent volume snapshot management

But until now, no MCP server existed to expose Velero CRDs to LLM-based tools in a safe, structured way.

This project provides:

  • A consistent API for querying Velero
  • Strong typed models
  • Complete read-only safety
  • Guaranteed LLM-friendly output
  • Ready integration with GitOps

πŸš€ Features

πŸ”§ MCP Tools

list_velero_backups(namespace?: str)

Returns a list of Velero Backup CRs.

get_velero_backup(name: str, namespace?: str)

Returns a detailed structured backup object.

list_velero_schedules(namespace?: str)

Lists Velero Schedule CRs including cron, paused state, and last backup.

generate_velero_backup_yaml(...)

Generates read-only YAML for a Velero Backup.


πŸ“¦ MCP Resource Endpoints

Resource Description
velero://backups All backups in default namespace
velero://schedules All schedules in default namespace

These allow LLMs to explore Velero state without calling tools.


πŸ— Architecture

  • Python 3.10+
  • MCP (official Model Context Protocol SDK)
  • Kubernetes Python Client
  • Pydantic models
  • Safe, read-only design
  • No kubectl, no exec, no side effects

Flow:

MCP Client β†’ Velero MCP Server β†’ Kubernetes API β†’ Velero CRDs

πŸ” Security Model

Designed to be 100% safe

The server never:

  • Creates backups
  • Runs restores
  • Deletes backup objects
  • Writes anything to Kubernetes

Only reads CRDs via the Kubernetes API.

RBAC Required:

get, list on:
- backups.velero.io
- schedules.velero.io

πŸ“₯ Installation

git clone https://github.com/YOUR-ORG/velero-mcp-server.git
cd velero-mcp-server

python -m venv .venv
source .venv/bin/activate    # Windows: .venv\Scripts\activate

pip install -r requirements.txt
pip install .

For development:

pip install ".[dev]"

βš™οΈ Configuration

Environment Variables

Variable Description Default
KUBECONFIG Path to kubeconfig auto
VELERO_NAMESPACE Velero namespace velero

K8s auth order:

  1. In-cluster ServiceAccount
  2. $KUBECONFIG
  3. ~/.kube/config

▢️ Running the Server

Start the server in stdio mode (required by MCP):

python -m velero_mcp_server.server

🧩 Example MCP Client Configuration

ChatGPT MCP configuration

{
  "mcpServers": {
    "velero-mcp": {
      "command": "python",
      "args": ["-m", "velero_mcp_server.server"],
      "env": {
        "KUBECONFIG": "/path/to/kubeconfig",
        "VELERO_NAMESPACE": "velero"
      }
    }
  }
}

Claude Desktop

"mcpServers": {
  "velero-mcp": {
    "command": "python",
    "args": ["-m", "velero_mcp_server.server"],
    "env": {
      "KUBECONFIG": "/path/to/kubeconfig",
      "VELERO_NAMESPACE": "velero"
    }
  }
}

πŸ§ͺ Example Usage (AI Agent)

List failed backups

β€œCall list_velero_backups and filter phase = Failed.”

Inspect a backup

β€œUse get_velero_backup for prod-full and tell me included namespaces.”

Generate a manifest

β€œGenerate a Velero backup YAML including namespaces db, logging, TTL=168h.”

Produces:

apiVersion: velero.io/v1
kind: Backup
metadata:
  name: prod-backup
  namespace: velero
spec:
  includedNamespaces:
    - db
    - logging
  ttl: 168h

πŸ›  Development

Run linters:

ruff check velero_mcp_server

Type-check:

mypy velero_mcp_server

Run tests:

pytest

🀝 Contributing

We welcome contributions of all kinds:

  • Add Velero Restore / VolumeSnapshot support
  • Improve error handling
  • Add more MCP resources
  • Add a Helm chart
  • Add logging or metrics
  • Improve documentation

Read the full CONTRIBUTING.md.


πŸ“œ License

This project is licensed under the MIT License, allowing:

  • Commercial use
  • Private use
  • Modification
  • Distribution

πŸ—Ί Roadmap

Planned improvements:

  • Add support for Restore CRDs
  • Snapshot objects
  • Restore impact analysis
  • Write-enabled mode (behind strict flags)
  • Publish to PyPI
  • Helm chart for cluster deployment

If you'd like to help shape the direction, please open an issue!

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured