
vedit-mcp
vedit-mcp
README
Vedit-MCP
This is an MCP service for video editing
, which can achieve basic editing operations with just one sentence.
English | 中文
Quick Start
1. Install Dependencies
1.1 Clone this project or directly download the zip package
1.2 Configure the Python environment
- It is recommended to use uv for installation
cd vedit-mcp
uv pip install -r requirements.txt
- Or install directly using pip
pip install -r requirements.txt
1.3 Configure ffmpeg
vedit-mcp.py
relies on ffmpeg
for implementation. Therefore, please configure ffmpeg.
# For Mac
brew install ffmpeg
# For Ubuntu
sudo apt update
sudo apt install ffmpeg
2. Start the Service
2.1. It is recommended to use google-adk
to build your own project
- Please refer to adk-sample
Before executing this sample script
- Please ensure that the path format is at least as follows
- sample
- kb
- raw/test.mp4 // This is the original video you need to process
- adk_sample.py
- vedit_mcp.py
- Please install the following two dependencies
# # adk-sample pip install requirements
# google-adk==0.3.0
# litellm==1.67.2
- Please set the api-key and api-base
Currently, this script uses the API of the Volcano Ark Platform
, and you can go there to configure it by yourself.
After obtaining the API_KEY, please configure the API_KEY as an environment variable.
export OPENAI_API_KEY="your-api-key"
- Execute the script
cd sample
python adk_sample.py
- End of execution
After this script is executed correctly and ends, a video result file will be generated in kb/result, and a log file will be generated and the result will be output.
If you need secondary development, you can choose to add vedit_mcp.py
to your project for use.
2.2 Or build using cline
Firstly, please ensure that your Python environment and ffmpeg configuration are correct Configure cline_mcp_settings. json as follows
{
"mcpServers": {
"vedit-mcp": {
"command": "python",
"args": [
"vedit_mcp.py",
"--kb_dir",
"your-kb-dir-here"
]
}
}
}
2.3. Execute using the stramlit web interface
To be supplemented
3. precautions
- It is recommended to use the
thinking model
to handle this type of task. Currently, it seems that thethinking model
performs better in handling this type of task? But no further testing has been conducted, it's just an intuitive feeling.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.