
V2.ai Insights Scraper MCP
A Model Context Protocol server that scrapes blog posts from V2.ai Insights, extracts content, and provides AI-powered summaries using OpenAI's GPT-4.
README
V2.ai Insights Scraper MCP
A Model Context Protocol (MCP) server that scrapes blog posts from V2.ai Insights, extracts content, and provides AI-powered summaries using OpenAI's GPT-4. Currently supports Contentful CMS integration with search capabilities.
📋 Strategic Vision: This project is evolving into a comprehensive AI intelligence platform. See STRATEGIC_VISION.md for the complete roadmap from content API to strategic intelligence platform.
Features
- 🔍 Multi-Source Content: Fetches from Contentful CMS and V2.ai web scraping
- 📝 Content Extraction: Extracts title, date, author, and content with intelligent fallbacks
- 🔎 Full-Text Search: Search across all blog content with Contentful's search API
- 🤖 AI Summarization: Generates summaries using OpenAI GPT-4
- 🔧 MCP Integration: Exposes tools for Claude Desktop integration
Tools Available
get_latest_posts()
- Retrieves blog posts with metadata (Contentful + V2.ai fallback)get_contentful_posts(limit)
- Fetch posts directly from Contentful CMSsearch_blogs(query, limit)
- NEW - Search across all blog contentsummarize_post(index)
- Returns AI-generated summary of a specific postget_post_content(index)
- Returns full content of a specific post
Setup
Prerequisites
- Python 3.12+
- uv package manager
- OpenAI API key
- Contentful CMS credentials (optional, for enhanced functionality)
Installation
-
Clone and navigate to project:
cd v2-ai-mcp
-
Install dependencies:
uv add fastmcp beautifulsoup4 requests openai
-
Set up environment variables:
Create a
.env
file based on.env.example
:cp .env.example .env
Edit
.env
with your credentials:# Required OPENAI_API_KEY=your-openai-api-key-here # Optional (for Contentful integration) CONTENTFUL_SPACE_ID=your-contentful-space-id CONTENTFUL_ACCESS_TOKEN=your-contentful-access-token CONTENTFUL_CONTENT_TYPE=pageBlogPost
Running the Server
uv run python -m src.v2_ai_mcp.main
The server will start and be available for MCP connections.
Testing the Scraper
Test individual components:
# Test scraper
uv run python -c "from src.v2_ai_mcp.scraper import fetch_blog_posts; print(fetch_blog_posts()[0]['title'])"
# Test with summarizer (requires OpenAI API key)
uv run python -c "from src.v2_ai_mcp.scraper import fetch_blog_posts; from src.v2_ai_mcp.summarizer import summarize; post = fetch_blog_posts()[0]; print(summarize(post['content'][:1000]))"
# Run unit tests
uv run pytest tests/ -v --cov=src
Claude Desktop Integration
Configuration
-
Install Claude Desktop (if not already installed)
-
Configure MCP in Claude Desktop:
Add to your Claude Desktop MCP configuration:
{ "mcpServers": { "v2-insights-scraper": { "command": "/path/to/uv", "args": ["run", "--directory", "/path/to/your/v2-ai-mcp", "python", "-m", "src.v2_ai_mcp.main"], "env": { "OPENAI_API_KEY": "your-api-key-here", "CONTENTFUL_SPACE_ID": "your-contentful-space-id", "CONTENTFUL_ACCESS_TOKEN": "your-contentful-access-token", "CONTENTFUL_CONTENT_TYPE": "pageBlogPost" } } } }
-
Restart Claude Desktop to load the MCP server
Using the Tools
Once configured, you can use these tools in Claude Desktop:
- Get latest posts:
get_latest_posts()
(intelligent Contentful + V2.ai fallback) - Get Contentful posts:
get_contentful_posts(10)
(direct CMS access) - Search blogs:
search_blogs("AI automation", 5)
(NEW - full-text search) - Summarize post:
summarize_post(0)
(index 0 for first post) - Get full content:
get_post_content(0)
Example Usage
🔍 Search for AI-related content:
search_blogs("artificial intelligence", 3)
📚 Get latest posts with automatic source selection:
get_latest_posts()
🤖 Get AI summary of specific post:
summarize_post(0)
Project Structure
v2-ai-mcp/
├── src/
│ └── v2_ai_mcp/
│ ├── __init__.py # Package initialization
│ ├── main.py # FastMCP server with tool definitions
│ ├── scraper.py # Web scraping logic
│ └── summarizer.py # OpenAI GPT-4 integration
├── tests/
│ ├── __init__.py # Test package initialization
│ ├── test_scraper.py # Unit tests for scraper
│ └── test_summarizer.py # Unit tests for summarizer
├── .github/
│ └── workflows/
│ └── ci.yml # GitHub Actions CI/CD pipeline
├── pyproject.toml # Project dependencies and config
├── .env.example # Environment variables template
├── .gitignore # Git ignore patterns
└── README.md # This file
Current Implementation
The scraper currently targets this specific blog post:
- URL:
https://www.v2.ai/insights/adopting-AI-assistants-while-balancing-risks
Extracted Data
- Title: "Adopting AI Assistants while Balancing Risks"
- Author: "Ashley Rodan"
- Date: "July 3, 2025"
- Content: ~12,785 characters of main content
Development
Adding More Blog Posts
To scrape multiple posts or different URLs, modify the fetch_blog_posts()
function in scraper.py
:
def fetch_blog_posts() -> list:
urls = [
"https://www.v2.ai/insights/post1",
"https://www.v2.ai/insights/post2",
# Add more URLs
]
return [fetch_blog_post(url) for url in urls]
Improving Content Extraction
The scraper uses multiple fallback strategies for extracting content. You can enhance it by:
- Inspecting V2.ai's HTML structure
- Adding more specific CSS selectors
- Improving date/author extraction patterns
Troubleshooting
Common Issues
- OpenAI API Key Error: Ensure your API key is set in environment variables
- Import Errors: Run
uv sync
to ensure all dependencies are installed - Scraping Issues: Check if the target URL is accessible and the HTML structure hasn't changed
Testing Components
# Test scraper only
uv run python -c "from src.v2_ai_mcp.scraper import fetch_blog_posts; posts = fetch_blog_posts(); print(f'Found {len(posts)} posts')"
# Run full test suite
uv run pytest tests/ -v --cov=src
# Test MCP server startup
uv run python -m src.v2_ai_mcp.main
Development
Running Tests
# Run all tests
uv run pytest
# Run with coverage
uv run pytest --cov=src --cov-report=html
# Run specific test file
uv run pytest tests/test_scraper.py -v
Code Quality
# Format code
uv run ruff format src tests
# Lint code
uv run ruff check src tests
# Fix auto-fixable issues
uv run ruff check --fix src tests
License
This project is for educational and development purposes.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.