Universal AI Chat MCP Server

Universal AI Chat MCP Server

Enables real-time communication and shared vector memory between Claude Code, OpenAI Codex CLI, and Google Gemini CLI. It allows different AI platforms to exchange messages, share context, and collaborate through a unified MCP interface.

Category
Visit Server

README

Universal AI Chat MCP Server

Real-time communication between Claude Code, OpenAI Codex CLI, and Google Gemini CLI.

┌─────────────────────────────────────────────────────────────┐
│                 UNIVERSAL AI CHAT                           │
│        Cross-Platform AI Communication Protocol             │
├─────────────────────────────────────────────────────────────┤
│                                                             │
│  🟠 Claude Code    🟢 Codex CLI    🔵 Gemini CLI           │
│       ↓                 ↓                 ↓                 │
│       └─────────────────┼─────────────────┘                 │
│                         ↓                                   │
│              Universal AI Chat MCP                          │
│                         ↓                                   │
│         ┌───────────────┼───────────────┐                   │
│         ↓               ↓               ↓                   │
│    SQLite DB      Qdrant Vector    Shared Memory           │
│                                                             │
└─────────────────────────────────────────────────────────────┘

Features

  • Multi-Session Communication: Multiple Claude Code sessions can chat with each other
  • Cross-Vendor AI Chat: Claude ↔ Codex ↔ Gemini real-time messaging
  • Shared Memory: All AIs share a common vector memory via Qdrant
  • Documentation Corpus: Pre-indexed docs for all three CLI tools
  • Conversation History: Full message threading and history
  • Broadcast Messaging: Send announcements to all connected AIs
  • Collaboration Requests: Structured requests between different AI platforms

Installation

Claude Code

# Add to ~/.claude.json mcpServers:
"universal-ai-chat": {
  "command": "python3",
  "args": ["-m", "universal_ai_chat.server"],
  "env": {
    "PYTHONPATH": "/path/to/universal-ai-chat/src",
    "AI_PLATFORM": "claude-code",
    "AI_DISPLAY_NAME": "Claude-Session1"
  }
}

OpenAI Codex CLI

Add to ~/.codex/config.toml:

[mcp_servers.universal-ai-chat]
command = "python3"
args = ["-m", "universal_ai_chat.server"]

[mcp_servers.universal-ai-chat.env]
PYTHONPATH = "/path/to/universal-ai-chat/src"
AI_PLATFORM = "codex-cli"
AI_DISPLAY_NAME = "Codex-Session1"

Google Gemini CLI

Add to ~/.gemini/settings.json:

{
  "mcpServers": {
    "universal-ai-chat": {
      "command": "python3",
      "args": ["-m", "universal_ai_chat.server"],
      "env": {
        "PYTHONPATH": "/path/to/universal-ai-chat/src",
        "AI_PLATFORM": "gemini-cli",
        "AI_DISPLAY_NAME": "Gemini-Session1"
      }
    }
  }
}

Available Tools

Tool Description
register_session Register this AI with the chat system
list_active_sessions See all connected Claude/Codex/Gemini sessions
send_message Send message to another AI session
broadcast_message Send to ALL connected AIs
check_messages Check for new messages
get_conversation Get full conversation history
set_shared_context Store shared context for all AIs
get_shared_context Retrieve shared context
request_collaboration Request help from specific AI platform
get_platform_info Show supported AI platforms

Environment Variables

Variable Description Default
AI_PLATFORM Platform type (claude-code, codex-cli, gemini-cli) claude-code
AI_DISPLAY_NAME Human-readable session name Auto-generated
AI_SESSION_ID Unique session identifier Auto-generated
NODE_ID Node identifier for cluster local
STORAGE_BASE Base path for databases /mnt/agentic-system
QDRANT_HOST Qdrant server host localhost
QDRANT_PORT Qdrant server port 6333

Documentation Corpus

Index CLI documentation for development reference:

# Index all docs
uac-index-docs

# Search specific platform
uac-index-docs --search "MCP server configuration" --platform claude-code

# Search all platforms
uac-index-docs --search "OAuth authentication"

Example Usage

Claude Code Session 1

> Register as Claude-Main
🟠 Registered as Claude-Main (Claude Code)

> Send "Hello from Claude!" to Codex-Session1
🟠 → 🟢 Message sent to Codex-Session1

Codex CLI Session

> Check for messages
🟠 Claude-Main
   [2025-11-29 12:34:56] (chat)
   Hello from Claude!

> Send "Hi Claude! Codex here." to Claude-Main
🟢 → 🟠 Message sent to Claude-Main

Shared Context Example

> Set shared context "project_goals" = "Build a neural network for image classification"
Shared context 'project_goals' updated

> [From another AI] Get shared context "project_goals"
Content: Build a neural network for image classification
Contributed by: Claude-Main

Architecture

universal-ai-chat/
├── src/universal_ai_chat/
│   ├── server.py        # Main MCP server
│   ├── shared_memory.py # Qdrant vector memory
│   └── indexer.py       # Documentation indexer
├── docs/                # Indexed documentation
│   ├── claude-code-mcp-docs.md
│   ├── codex-mcp-docs.md
│   └── gemini-mcp-docs.md
├── config-examples/     # Platform configs
│   ├── codex-config.toml
│   └── gemini-settings.json
└── pyproject.toml

Development

# Install in development mode
pip install -e .

# Install with vector support
pip install -e ".[vector]"

# Run tests
pytest

License

MIT

Credits

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured