Unichat

Unichat

Send requests to OpenAI, MistralAI, Anthropic, xAI, or Google AI using MCP protocol via tool or predefined prompts. Vendor API key required

amidabuddha

Remote Shell Execution
AI Content Generation
Visit Server

Tools

unichat

Chat with an assistant. Example tool use message: Ask the unichat to review and evaluate your proposal.

README

Unichat MCP Server in Python

Also available in TypeScript

<h4 align="center"> <a href="https://github.com/amidabuddha/unichat-mcp-server/blob/main/LICENSE.md"> <img src="https://img.shields.io/github/license/amidabuddha/unichat-mcp-server" alt="Released under the MIT license." /> </a> <a href="https://smithery.ai/server/unichat-mcp-server"> <img src="https://smithery.ai/badge/unichat-mcp-server" alt="Smithery Server Installations" /> </a> </h4>

Send requests to OpenAI, MistralAI, Anthropic, xAI, Google AI or DeepSeek using MCP protocol via tool or predefined prompts. Vendor API key required

Tools

The server implements one tool:

  • unichat: Send a request to unichat
    • Takes "messages" as required string arguments
    • Returns a response

Prompts

  • code_review
    • Review code for best practices, potential issues, and improvements
    • Arguments:
      • code (string, required): The code to review"
  • document_code
    • Generate documentation for code including docstrings and comments
    • Arguments:
      • code (string, required): The code to comment"
  • explain_code
    • Explain how a piece of code works in detail
    • Arguments:
      • code (string, required): The code to explain"
  • code_rework
    • Apply requested changes to the provided code
    • Arguments:
      • changes (string, optional): The changes to apply"
      • code (string, required): The code to rework"

Quickstart

Install

Claude Desktop

On MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json On Windows: %APPDATA%/Claude/claude_desktop_config.json

Supported Models:

A list of currently supported models to be used as "SELECTED_UNICHAT_MODEL" may be found here. Please make sure to add the relevant vendor API key as "YOUR_UNICHAT_API_KEY"

Example:

"env": {
  "UNICHAT_MODEL": "gpt-4o-mini",
  "UNICHAT_API_KEY": "YOUR_OPENAI_API_KEY"
}

Development/Unpublished Servers Configuration

"mcpServers": {
  "unichat-mcp-server": {
    "command": "uv",
    "args": [
      "--directory",
      "{{your source code local directory}}/unichat-mcp-server",
      "run",
      "unichat-mcp-server"
    ],
    "env": {
      "UNICHAT_MODEL": "SELECTED_UNICHAT_MODEL",
      "UNICHAT_API_KEY": "YOUR_UNICHAT_API_KEY"
    }
  }
}

Published Servers Configuration

"mcpServers": {
  "unichat-mcp-server": {
    "command": "uvx",
    "args": [
      "unichat-mcp-server"
    ],
    "env": {
      "UNICHAT_MODEL": "SELECTED_UNICHAT_MODEL",
      "UNICHAT_API_KEY": "YOUR_UNICHAT_API_KEY"
    }
  }
}

Installing via Smithery

To install Unichat for Claude Desktop automatically via Smithery:

npx -y @smithery/cli install unichat-mcp-server --client claude

Development

Building and Publishing

To prepare the package for distribution:

  1. Sync dependencies and update lockfile:
uv sync
  1. Build package distributions:
uv build

This will create source and wheel distributions in the dist/ directory.

  1. Publish to PyPI:
uv publish --token {{YOUR_PYPI_API_TOKEN}}

Debugging

Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, we strongly recommend using the MCP Inspector.

You can launch the MCP Inspector via npm with this command:

npx @modelcontextprotocol/inspector uv --directory {{your source code local directory}}/unichat-mcp-server run unichat-mcp-server

Upon launching, the Inspector will display a URL that you can access in your browser to begin debugging.

Recommended Servers

E2B

E2B

Using MCP to run code via e2b.

Official
Featured
AIO-MCP Server

AIO-MCP Server

🚀 All-in-one MCP server with AI search, RAG, and multi-service integrations (GitLab/Jira/Confluence/YouTube) for AI-enhanced development workflows. Folk from

Featured
Local
Persistent Knowledge Graph

Persistent Knowledge Graph

An implementation of persistent memory for Claude using a local knowledge graph, allowing the AI to remember information about users across conversations with customizable storage location.

Featured
Local
React MCP

React MCP

react-mcp integrates with Claude Desktop, enabling the creation and modification of React apps based on user prompts

Featured
Local
Any OpenAI Compatible API Integrations

Any OpenAI Compatible API Integrations

Integrate Claude with Any OpenAI SDK Compatible Chat Completion API - OpenAI, Perplexity, Groq, xAI, PyroPrompts and more.

Featured
Exa MCP

Exa MCP

A Model Context Protocol server that enables AI assistants like Claude to perform real-time web searches using the Exa AI Search API in a safe and controlled manner.

Featured
AI 图像生成服务

AI 图像生成服务

可用于cursor 集成 mcp server

Featured
Web Research Server

Web Research Server

A Model Context Protocol server that enables Claude to perform web research by integrating Google search, extracting webpage content, and capturing screenshots.

Featured
MySQL Server

MySQL Server

Allows AI assistants to list tables, read data, and execute SQL queries through a controlled interface, making database exploration and analysis safer and more structured.

Featured
Browser Use (used by Deploya.dev)

Browser Use (used by Deploya.dev)

AI-driven browser automation server that implements the Model Context Protocol to enable natural language control of web browsers for tasks like navigation, form filling, and visual interaction.

Featured