Unichat
Send requests to OpenAI, MistralAI, Anthropic, xAI, or Google AI using MCP protocol via tool or predefined prompts. Vendor API key required
amidabuddha
Tools
unichat
Chat with an assistant. Example tool use message: Ask the unichat to review and evaluate your proposal.
README
Unichat MCP Server in Python
Also available in TypeScript
<h4 align="center"> <a href="https://github.com/amidabuddha/unichat-mcp-server/blob/main/LICENSE.md"> <img src="https://img.shields.io/github/license/amidabuddha/unichat-mcp-server" alt="Released under the MIT license." /> </a> <a href="https://smithery.ai/server/unichat-mcp-server"> <img src="https://smithery.ai/badge/unichat-mcp-server" alt="Smithery Server Installations" /> </a> </h4>
Send requests to OpenAI, MistralAI, Anthropic, xAI, Google AI or DeepSeek using MCP protocol via tool or predefined prompts. Vendor API key required
Tools
The server implements one tool:
unichat
: Send a request to unichat- Takes "messages" as required string arguments
- Returns a response
Prompts
code_review
- Review code for best practices, potential issues, and improvements
- Arguments:
code
(string, required): The code to review"
document_code
- Generate documentation for code including docstrings and comments
- Arguments:
code
(string, required): The code to comment"
explain_code
- Explain how a piece of code works in detail
- Arguments:
code
(string, required): The code to explain"
code_rework
- Apply requested changes to the provided code
- Arguments:
changes
(string, optional): The changes to apply"code
(string, required): The code to rework"
Quickstart
Install
Claude Desktop
On MacOS: ~/Library/Application\ Support/Claude/claude_desktop_config.json
On Windows: %APPDATA%/Claude/claude_desktop_config.json
Supported Models:
A list of currently supported models to be used as
"SELECTED_UNICHAT_MODEL"
may be found here. Please make sure to add the relevant vendor API key as"YOUR_UNICHAT_API_KEY"
Example:
"env": {
"UNICHAT_MODEL": "gpt-4o-mini",
"UNICHAT_API_KEY": "YOUR_OPENAI_API_KEY"
}
Development/Unpublished Servers Configuration
"mcpServers": {
"unichat-mcp-server": {
"command": "uv",
"args": [
"--directory",
"{{your source code local directory}}/unichat-mcp-server",
"run",
"unichat-mcp-server"
],
"env": {
"UNICHAT_MODEL": "SELECTED_UNICHAT_MODEL",
"UNICHAT_API_KEY": "YOUR_UNICHAT_API_KEY"
}
}
}
Published Servers Configuration
"mcpServers": {
"unichat-mcp-server": {
"command": "uvx",
"args": [
"unichat-mcp-server"
],
"env": {
"UNICHAT_MODEL": "SELECTED_UNICHAT_MODEL",
"UNICHAT_API_KEY": "YOUR_UNICHAT_API_KEY"
}
}
}
Installing via Smithery
To install Unichat for Claude Desktop automatically via Smithery:
npx -y @smithery/cli install unichat-mcp-server --client claude
Development
Building and Publishing
To prepare the package for distribution:
- Sync dependencies and update lockfile:
uv sync
- Build package distributions:
uv build
This will create source and wheel distributions in the dist/
directory.
- Publish to PyPI:
uv publish --token {{YOUR_PYPI_API_TOKEN}}
Debugging
Since MCP servers run over stdio, debugging can be challenging. For the best debugging experience, we strongly recommend using the MCP Inspector.
You can launch the MCP Inspector via npm
with this command:
npx @modelcontextprotocol/inspector uv --directory {{your source code local directory}}/unichat-mcp-server run unichat-mcp-server
Upon launching, the Inspector will display a URL that you can access in your browser to begin debugging.
Recommended Servers

E2B
Using MCP to run code via e2b.
AIO-MCP Server
🚀 All-in-one MCP server with AI search, RAG, and multi-service integrations (GitLab/Jira/Confluence/YouTube) for AI-enhanced development workflows. Folk from
Persistent Knowledge Graph
An implementation of persistent memory for Claude using a local knowledge graph, allowing the AI to remember information about users across conversations with customizable storage location.
React MCP
react-mcp integrates with Claude Desktop, enabling the creation and modification of React apps based on user prompts

Any OpenAI Compatible API Integrations
Integrate Claude with Any OpenAI SDK Compatible Chat Completion API - OpenAI, Perplexity, Groq, xAI, PyroPrompts and more.
Exa MCP
A Model Context Protocol server that enables AI assistants like Claude to perform real-time web searches using the Exa AI Search API in a safe and controlled manner.
AI 图像生成服务
可用于cursor 集成 mcp server
Web Research Server
A Model Context Protocol server that enables Claude to perform web research by integrating Google search, extracting webpage content, and capturing screenshots.
MySQL Server
Allows AI assistants to list tables, read data, and execute SQL queries through a controlled interface, making database exploration and analysis safer and more structured.
Browser Use (used by Deploya.dev)
AI-driven browser automation server that implements the Model Context Protocol to enable natural language control of web browsers for tasks like navigation, form filling, and visual interaction.