Ultimate MCP Coding Platform
Turns any LLM into a coding co-pilot with production-ready MCP server providing lint, test, execution, generation, and graph tools. Features Neo4j persistence, OpenAI Agent integration, REST API, and React frontend for comprehensive code development assistance.
README
Ultimate MCP Coding Platform
Ultimate MCP is a production-ready Model Context Protocol platform that turns any LLM into a coding co-pilot. It ships with a FastAPI + FastMCP backend, Neo4j graph persistence, OpenAI Agent integration, a React frontend, and Docker Compose orchestration.
Features
- Real MCP server with lint, test, execution, generation, and graph tools
- Neo4j persistence for tool artefacts with aggregation metrics
- REST API mirroring MCP tools and secured by bearer token + rate limiting
- Structured logging, strict CORS, security headers, and per-request IDs
- React + Vite frontend for human operators
- OpenAI Agents SDK bridge for autonomous tool discovery and execution
- Complete CI pipeline (lint, type-check, tests with coverage, Docker builds)
- Docker Compose for one-command local deployment
Repository Layout
backend/ FastAPI MCP server and tool implementations
frontend/ React TypeScript application
scripts/ Developer automation (setup & smoke tests)
deployment/ Docker Compose specification
docs/ Architecture, API, security, and operations guides
Quickstart
1. Dependencies
- Python 3.13+
- Node.js 20+
- Docker & Docker Compose (for containerised runs)
2. Bootstrap Environment
scripts/setup.py
This creates backend/.venv, installs Python requirements, and runs npm install for the frontend.
3. Run Locally (Developer Mode)
Backend:
source backend/.venv/bin/activate
uvicorn mcp_server.server:app --reload
Frontend:
cd frontend
npm run dev -- --host 0.0.0.0 --port 3000
Open the UI at http://localhost:3000. The API docs live at http://localhost:8000/docs.
4. Run with Docker Compose
cp .env.example .env # set AUTH_TOKEN before production use
docker compose -f deployment/docker-compose.yml up --build
Expose:
- Frontend:
http://localhost:3000 - API:
http://localhost:8000 - Neo4j Browser:
http://localhost:7474
Testing
# lint & type-check
backend/.venv/bin/ruff check backend
backend/.venv/bin/mypy backend
# run pytest with coverage
NEO4J_URI=bolt://localhost:7687 \
NEO4J_USER=neo4j \
NEO4J_PASSWORD=password123 \
AUTH_TOKEN=test-token \
backend/.venv/bin/pytest backend/tests --cov=backend/mcp_server --cov=backend/agent_integration --cov-report=term-missing --cov-fail-under=80
# frontend lint + build
cd frontend
npm run lint
npm run build
A ready-made smoke test hits key endpoints:
scripts/smoke_test.py --base-url http://localhost:8000
MCP & Agent Integration
- MCP server mounted at
/mcpusing FastMCP streamable HTTP transport. backend/agent_integration/client.pyprovidesAgentDiscoveryfor listing/invoking tools and anOpenAIAgentBridgeto register the server with OpenAI Agents.
Example usage:
from backend.agent_integration.client import AgentDiscovery
import asyncio
async def main():
discovery = AgentDiscovery("http://localhost:8000", auth_token="change-me")
print(await discovery.list_tools())
asyncio.run(main())
Security Highlights
- Bearer token auth on all mutating endpoints
- SlowAPI rate limiting (default 10 req/s per IP)
- Request size checks and security headers (
CSP,X-Frame-Options, etc.) - Non-root Docker images with capabilities dropped
Detailed guidance in docs/SECURITY.md.
Configuration
See .env.example for required variables:
NEO4J_URI=bolt://neo4j:7687
NEO4J_USER=neo4j
NEO4J_PASSWORD=password123
NEO4J_DATABASE=neo4j
ALLOWED_ORIGINS=http://localhost:3000
AUTH_TOKEN=change-me
RATE_LIMIT_RPS=10
Documentation
Release Packaging
Create an archive for distribution:
zip -r Ultimate_MCP-release.zip \
backend frontend deployment docs scripts \
pyproject.toml README.md .env.example
License
MIT License © 2025 Ultimate MCP maintainers.
Ultimate_MCP
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.