
Turbify Store MCP Server
Provides tools to create, update, delete, and search catalog items through the Turbify Store Catalog API.
README
Turbify Store MCP Server
A Model Context Protocol (MCP) server for managing Turbify Store catalogs. This server provides tools to create, update, delete, and search catalog items through the Turbify Store Catalog API.
Features
- Item Management: Create, update, and delete catalog items
- Search: Search through your catalog using keywords
- Configuration: View and manage store settings
- Error Handling: Comprehensive error handling and reporting
- Documentation: Built-in API documentation via MCP resources
Installation
- Clone this repository:
git clone <your-repo-url>
cd turbify-mcp
- Initialize with uv (recommended):
uv init .
uv add fastmcp pydantic requests urllib3
Or install with pip:
pip install -e .
Configuration
Set the following environment variables:
export TURBIFY_STORE_ID="your_store_id"
export TURBIFY_CONTRACT_TOKEN="your_contract_token"
Or create a .env
file:
TURBIFY_STORE_ID=your_store_id
TURBIFY_CONTRACT_TOKEN=your_contract_token
Usage
Running the Server
python src/turbify_mcp/server.py
Or if installed:
turbify-mcp
Using MCP Inspector
mcp-inspector "python run_server.py"
Available Tools
create_catalog_item
Create a new item in your catalog:
create_catalog_item(
item_id="ITEM123",
name="Sample Product",
table_id="TABLE1",
price=29.99,
sale_price=24.99,
orderable="yes",
taxable="yes"
)
update_catalog_item
Update an existing item:
update_catalog_item(
item_id="ITEM123",
name="Updated Product Name",
price=34.99
)
delete_catalog_item
Delete an item:
delete_catalog_item(item_id="ITEM123")
search_catalog_items
Search for items:
search_catalog_items(
keyword="shirt",
start_index=1,
end_index=50
)
get_store_config
Get current configuration:
get_store_config()
MCP Integration
This server can be used with any MCP-compatible client, such as:
- Claude Desktop
- Custom MCP clients
- Development tools that support MCP
Claude Desktop Configuration
Add to your Claude Desktop config:
{
"mcpServers": {
"turbify-store": {
"command": "python",
"args": ["path/to/turbify-store-mcp/src/turbify_store_mcp/server.py"],
"env": {
"TURBIFY_STORE_ID": "your_store_id",
"TURBIFY_CONTRACT_TOKEN": "your_contract_token"
}
}
}
}
API Response Format
All tools return JSON responses with the following structure:
Success Response
{
"status": "success",
"messages": [
{
"code": "SUCCESS",
"message": "Operation completed successfully"
}
],
"items": [...], // For search operations
"item_ids": [...] // For some operations
}
Error Response
{
"status": "error",
"errors": [
{
"code": "ERROR_CODE",
"message": "Error description"
}
]
}
Development
Setting up for development:
# Install with development dependencies
uv add --dev pytest pytest-asyncio black mypy
# Run tests
uv run pytest
# Format code
uv run black .
# Type checking
uv run mypy src/
Project Structure
turbify-mcp/
├── src/
│ └── turbify_mcp/
│ ├── __init__.py
│ └── server.py
├── tests/
├── pyproject.toml
├── README.md
└── .env
Requirements
- Python 3.8+
- Turbify Store API credentials
- FastMCP
- Pydantic v2
- Requests
Limitations
- Maximum 1000 items per search query (Turbify API limit)
- Rate limiting as per Turbify Store API terms
- XML-based API (handled internally)
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
License
[Add your license information here]
Support
For issues related to:
- This MCP server: Create an issue in this repository
- Turbify Store API: Consult Turbify Store API documentation
- MCP protocol: Check the Model Context Protocol specification
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.