Travel Planner MCP Server
Provides weather-aware travel planning tools that fetch 3-day forecasts and generate structured itineraries using a multi-agent orchestration system. It exposes specialized agents for weather data and trip planning to any MCP-compliant client.
README
Travel Planner MCP Server
A multi-agent travel planning system built with Google Agent Development Kit (ADK) that exposes its tools via the Model Context Protocol (MCP).
The system uses a root agent with two sub-agents — a weather agent and a travel plan agent — to create weather-aware 3-day travel itineraries. The tools are also exposed through an MCP server, making them accessible to any MCP-compliant client.
Architecture
┌─────────────────────────────────────────────────┐
│ Root Agent │
│ (travel_planner) │
│ │
│ Orchestrates the travel planning workflow: │
│ gather info → check weather → create plan │
│ │
│ ┌─────────────────┐ ┌──────────────────────┐ │
│ │ Weather Agent │ │ Travel Plan Agent │ │
│ │ │ │ │ │
│ │ get_weather() │ │ create_travel_plan()│ │
│ │ (Open-Meteo API)│ │ (itinerary builder) │ │
│ └─────────────────┘ └──────────────────────┘ │
└─────────────────────────────────────────────────┘
▼ exposed via ▼
┌─────────────────────────────────────────────────┐
│ MCP Server (stdio) │
│ │
│ Wraps ADK FunctionTools and exposes them as │
│ MCP tools accessible to any MCP client │
│ │
│ Tools: get_weather, create_travel_plan │
└─────────────────────────────────────────────────┘
Project Structure
travel-planner-mcp-server/
├── travel_planner/ # ADK multi-agent package
│ ├── __init__.py
│ ├── agent.py # Root agent (orchestrator with sub-agents)
│ ├── sub_agents/
│ │ ├── __init__.py
│ │ ├── weather_agent.py # Weather specialist sub-agent
│ │ └── travel_plan_agent.py # Travel planning specialist sub-agent
│ └── tools/
│ ├── __init__.py
│ ├── weather_tools.py # Open-Meteo API weather tool
│ └── travel_tools.py # Travel plan generation tool
├── mcp_server.py # MCP server exposing ADK tools
├── adk_client_agent/ # Example ADK agent consuming the MCP server
│ └── mcp_travel_client/
│ ├── __init__.py
│ └── agent.py
├── pyproject.toml
├── requirements.txt
├── .env.example
└── README.md
Prerequisites
- Python 3.10+
- A Google API key (for Gemini model access)
Setup
-
Clone the repository:
git clone <repo-url> cd travel-planner-mcp-server -
Install dependencies:
pip install -r requirements.txt -
Configure environment:
cp .env.example .env # Edit .env and add your Google API key
Usage
Option 1: Run the ADK Multi-Agent System Directly
This uses the root agent with its sub-agents through the ADK web UI:
adk web
# Select "travel_planner" in the browser UI
The root agent will:
- Ask for your destination and travel date
- Delegate to the weather agent to fetch the forecast
- Delegate to the travel plan agent to create the itinerary
- Present a comprehensive 3-day travel plan
Option 2: Run the MCP Server
This exposes the tools via MCP protocol for any MCP client to consume:
python mcp_server.py
The MCP server exposes two tools:
get_weather— Fetches 3-day weather forecast for a location using Open-Meteo APIcreate_travel_plan— Generates a structured 3-day travel itinerary template
Option 3: Run the MCP Client Agent
This demonstrates an ADK agent consuming the MCP server:
cd adk_client_agent
adk web
# Select "mcp_travel_client" in the browser UI
Option 4: Connect from Any MCP Client
Add to your MCP client configuration (e.g., Claude Desktop, Cursor, etc.):
{
"mcpServers": {
"travel-planner": {
"command": "python3",
"args": ["/path/to/mcp_server.py"]
}
}
}
Tools
get_weather
Fetches a 3-day weather forecast using the Open-Meteo API (free, no API key required).
Parameters:
| Parameter | Type | Description |
|---|---|---|
location |
string | City or place name (e.g., "Paris", "Tokyo") |
date |
string | Start date in YYYY-MM-DD format |
Returns: Temperature (C/F), conditions, precipitation, wind speed, and UV index for 3 days.
create_travel_plan
Generates a structured 3-day travel itinerary template.
Parameters:
| Parameter | Type | Description |
|---|---|---|
location |
string | Destination city or place |
start_date |
string | Trip start date (YYYY-MM-DD) |
weather_summary |
string | Weather conditions summary |
interests |
string | Travel interests (default: "general sightseeing") |
Returns: Day-by-day itinerary structure with time slots, meals, and tips.
How It Works
This project demonstrates Pattern 2 from the ADK documentation: Building an MCP server with ADK tools.
- ADK
FunctionToolwraps the Python tool functions adk_to_mcp_tool_type()converts ADK tool schemas to MCP format- The MCP server advertises tools via
list_toolsand executes them viacall_tool - Any MCP client can discover and invoke the tools through the standard protocol
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.