
translator-ai
Enables translation of JSON i18n files to multiple languages using various AI providers (Google Gemini, OpenAI, Ollama/DeepSeek) with intelligent caching and deduplication.
README
translator-ai
Fast and efficient JSON i18n translator supporting multiple AI providers (Google Gemini, OpenAI & Ollama/DeepSeek) with intelligent caching, multi-file deduplication, and MCP integration.
Features
- Multiple AI Providers: Choose between Google Gemini, OpenAI (cloud) or Ollama/DeepSeek (local) for translations
- Multi-File Support: Process multiple files with automatic deduplication to save API calls
- Incremental Caching: Only translates new or modified strings, dramatically reducing API calls
- Batch Processing: Intelligently batches translations for optimal performance
- Path Preservation: Maintains exact JSON structure including nested objects and arrays
- Cross-Platform: Works on Windows, macOS, and Linux with automatic cache directory detection
- Developer Friendly: Built-in performance statistics and progress indicators
- Cost Effective: Minimizes API usage through smart caching and deduplication
- Language Detection: Automatically detect source language instead of assuming English
- Multiple Target Languages: Translate to multiple languages in a single command
- Translation Metadata: Optionally include translation details in output files for tracking
- Dry Run Mode: Preview what would be translated without making API calls
- Format Preservation: Maintains URLs, emails, dates, numbers, and template variables unchanged
Installation
Global Installation (Recommended)
npm install -g translator-ai
Local Installation
npm install translator-ai
Configuration
Option 1: Google Gemini API (Cloud)
Create a .env
file in your project root or set the environment variable:
GEMINI_API_KEY=your_gemini_api_key_here
Get your API key from Google AI Studio.
Option 2: OpenAI API (Cloud)
Create a .env
file in your project root or set the environment variable:
OPENAI_API_KEY=your_openai_api_key_here
Get your API key from OpenAI Platform.
Option 3: Ollama with DeepSeek-R1 (Local)
For completely local translation without API costs:
- Install Ollama
- Pull the DeepSeek-R1 model:
ollama pull deepseek-r1:latest
- Use the
--provider ollama
flag:translator-ai source.json -l es -o spanish.json --provider ollama
Usage
Basic Usage
# Translate a single file
translator-ai source.json -l es -o spanish.json
# Translate multiple files with deduplication
translator-ai src/locales/en/*.json -l es -o "{dir}/{name}.{lang}.json"
# Use glob patterns
translator-ai "src/**/*.en.json" -l fr -o "{dir}/{name}.fr.json"
Command Line Options
translator-ai <inputFiles...> [options]
Arguments:
inputFiles Path(s) to source JSON file(s) or glob patterns
Options:
-l, --lang <langCodes> Target language code(s), comma-separated for multiple
-o, --output <pattern> Output file path or pattern
--stdout Output to stdout instead of file
--stats Show detailed performance statistics
--no-cache Disable incremental translation cache
--cache-file <path> Custom cache file path
--provider <type> Translation provider: gemini, openai, or ollama (default: gemini)
--ollama-url <url> Ollama API URL (default: http://localhost:11434)
--ollama-model <model> Ollama model name (default: deepseek-r1:latest)
--gemini-model <model> Gemini model name (default: gemini-2.0-flash-lite)
--openai-model <model> OpenAI model name (default: gpt-4o-mini)
--list-providers List available translation providers
--verbose Enable verbose output for debugging
--detect-source Auto-detect source language instead of assuming English
--dry-run Preview what would be translated without making API calls
--preserve-formats Preserve URLs, emails, numbers, dates, and other formats
--metadata Add translation metadata to output files (may break some i18n parsers)
--sort-keys Sort output JSON keys alphabetically
--check-keys Verify all source keys exist in output (exit with error if keys are missing)
-h, --help Display help
-V, --version Display version
Output Pattern Variables (for multiple files):
{dir} - Original directory path
{name} - Original filename without extension
{lang} - Target language code
Examples
Translate a single file
translator-ai en.json -l es -o es.json
Translate multiple files with pattern
# All JSON files in a directory
translator-ai locales/en/*.json -l es -o "locales/es/{name}.json"
# Recursive glob pattern
translator-ai "src/**/en.json" -l fr -o "{dir}/fr.json"
# Multiple specific files
translator-ai file1.json file2.json file3.json -l de -o "{name}.de.json"
Translate with deduplication savings
# Shows statistics including how many API calls were saved
translator-ai src/i18n/*.json -l ja -o "{dir}/{name}.{lang}.json" --stats
Output to stdout (useful for piping)
translator-ai en.json -l de --stdout > de.json
Parse output with jq
translator-ai en.json -l de --stdout | jq
Disable caching for fresh translation
translator-ai en.json -l ja -o ja.json --no-cache
Use custom cache location
translator-ai en.json -l ko -o ko.json --cache-file /path/to/cache.json
Use Ollama for local translation
# Basic usage with Ollama
translator-ai en.json -l es -o es.json --provider ollama
# Use a different Ollama model
translator-ai en.json -l fr -o fr.json --provider ollama --ollama-model llama2:latest
# Connect to remote Ollama instance
translator-ai en.json -l de -o de.json --provider ollama --ollama-url http://192.168.1.100:11434
# Check available providers
translator-ai --list-providers
Advanced Features
# Detect source language automatically
translator-ai content.json -l es -o spanish.json --detect-source
# Translate to multiple languages at once
translator-ai en.json -l es,fr,de,ja -o translations/{lang}.json
# Dry run - see what would be translated without making API calls
translator-ai en.json -l es -o es.json --dry-run
# Preserve formats (URLs, emails, dates, numbers, template variables)
translator-ai app.json -l fr -o app-fr.json --preserve-formats
# Include translation metadata (disabled by default to ensure compatibility)
translator-ai en.json -l fr -o fr.json --metadata
# Sort keys alphabetically for consistent output
translator-ai en.json -l fr -o fr.json --sort-keys
# Verify all keys are present in the translation
translator-ai en.json -l fr -o fr.json --check-keys
# Use a different Gemini model
translator-ai en.json -l es -o es.json --gemini-model gemini-2.5-flash
# Combine features
translator-ai src/**/*.json -l es,fr,de -o "{dir}/{name}.{lang}.json" \
--detect-source --preserve-formats --stats --check-keys
Available Gemini Models
The --gemini-model
option allows you to choose from various Gemini models. Popular options include:
gemini-2.0-flash-lite
(default) - Fast and efficient for most translationsgemini-2.5-flash
- Enhanced performance with newer capabilitiesgemini-pro
- More sophisticated understanding for complex translationsgemini-1.5-pro
- Previous generation pro modelgemini-1.5-flash
- Previous generation fast model
Example usage:
# Use the latest flash model
translator-ai en.json -l es -o es.json --gemini-model gemini-2.5-flash
# Use the default lightweight model
translator-ai en.json -l fr -o fr.json --gemini-model gemini-2.0-flash-lite
Available OpenAI Models
The --openai-model
option allows you to choose from various OpenAI models. Popular options include:
gpt-4o-mini
(default) - Cost-effective and fast for most translationsgpt-4o
- Most capable model with advanced understandinggpt-4-turbo
- Previous generation flagship modelgpt-3.5-turbo
- Fast and efficient for simpler translations
Example usage:
# Use OpenAI with the default model
translator-ai en.json -l es -o es.json --provider openai
# Use GPT-4o for complex translations
translator-ai en.json -l ja -o ja.json --provider openai --openai-model gpt-4o
# Use GPT-3.5-turbo for faster, simpler translations
translator-ai en.json -l fr -o fr.json --provider openai --openai-model gpt-3.5-turbo
Translation Metadata
When enabled with the --metadata
flag, translator-ai adds metadata to help track translations:
{
"_translator_metadata": {
"tool": "translator-ai v1.1.0",
"repository": "https://github.com/DatanoiseTV/translator-ai",
"provider": "Google Gemini",
"source_language": "English",
"target_language": "fr",
"timestamp": "2025-06-20T12:34:56.789Z",
"total_strings": 42,
"source_file": "en.json"
},
"greeting": "Bonjour",
"farewell": "Au revoir"
}
Metadata is disabled by default to ensure compatibility with i18n parsers. Use --metadata
to enable it.
Key Sorting
Use the --sort-keys
flag to sort all JSON keys alphabetically in the output:
translator-ai en.json -l es -o es.json --sort-keys
This ensures consistent ordering across translations and makes diffs cleaner. Keys are sorted:
- Case-insensitively (a, B, c, not B, a, c)
- Recursively through all nested objects
- Arrays maintain their element order
Key Verification
Use the --check-keys
flag to ensure translation completeness:
translator-ai en.json -l es -o es.json --check-keys
This feature:
- Verifies all source keys exist in the translated output
- Reports any missing keys with their full paths
- Exits with error code 1 if any keys are missing
- Helps catch translation API failures or formatting issues
- Ignores metadata keys when checking
Supported Language Codes
It should support any standardized language codes.
How It Works
- Parsing: Reads and flattens your JSON structure into paths
- Deduplication: When processing multiple files, identifies shared strings
- Caching: Checks cache for previously translated strings
- Diffing: Identifies new or modified strings needing translation
- Batching: Groups unique strings into optimal batch sizes for API efficiency
- Translation: Sends batches to selected provider (Gemini API or local Ollama)
- Reconstruction: Rebuilds the exact JSON structure with translations
- Caching: Updates cache with new translations for future use
Multi-File Deduplication
When translating multiple files, translator-ai automatically:
- Identifies duplicate strings across files
- Translates each unique string only once
- Applies the same translation consistently across all files
- Saves significant API calls and ensures consistency
Example: If 10 files share 50% of their strings, you save ~50% on API calls!
Cache Management
Default Cache Locations
- Windows:
%APPDATA%\translator-ai\translation-cache.json
- macOS:
~/Library/Caches/translator-ai/translation-cache.json
- Linux:
~/.cache/translator-ai/translation-cache.json
The cache file stores translations indexed by:
- Source file path
- Target language
- SHA-256 hash of source string
This ensures that:
- Modified strings are retranslated
- Removed strings are pruned from cache
- Multiple projects can share the same cache without conflicts
Provider Comparison
Google Gemini
- Pros: Fast, accurate, handles large batches efficiently
- Cons: Requires API key, has usage costs
- Available Models:
gemini-2.0-flash-lite
(default) - Fastest, most cost-effectivegemini-pro
- Balanced performancegemini-1.5-pro
- Advanced capabilitiesgemini-1.5-flash
- Fast with good quality
- Best for: Production use, large projects, when accuracy is critical
Ollama (Local)
- Pros: Free, runs locally, no API limits, privacy-friendly
- Cons: Slower, requires local resources, model download needed
- Best for: Development, privacy-sensitive data, cost-conscious projects
Performance Tips
- Use caching (enabled by default) to minimize API calls
- Batch multiple files in the same session to leverage warm cache
- Use
--stats
flag to monitor performance and optimization opportunities - Keep source files consistent to maximize cache hits
- For Ollama: Use a powerful machine for better performance
API Limits and Costs
Gemini API
- Uses Gemini 2.0 Flash Lite model for optimal speed and cost
- Chooses best batch size dynamically depending on input key count
- Batches up to 100 strings per API call
- Check Google's pricing for current rates
Ollama
- No API costs - runs entirely on your hardware
- Performance depends on your machine's capabilities
- Supports various models with different speed/quality tradeoffs
Using with Model Context Protocol (MCP)
translator-ai can be used as an MCP server, allowing AI assistants like Claude Desktop to translate files directly.
MCP Configuration
Add to your Claude Desktop configuration:
macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"translator-ai": {
"command": "npx",
"args": [
"-y",
"translator-ai-mcp"
],
"env": {
"GEMINI_API_KEY": "your-gemini-api-key-here"
// Or for Ollama:
// "TRANSLATOR_PROVIDER": "ollama"
}
}
}
}
MCP Usage Examples
Once configured, you can ask Claude to translate files:
Human: Can you translate my English locale file to Spanish?
Claude: I'll translate your English locale file to Spanish using translator-ai.
<use_tool name="translate_json">
{
"inputFile": "locales/en.json",
"targetLanguage": "es",
"outputFile": "locales/es.json"
}
</use_tool>
Successfully translated! The file has been saved to locales/es.json.
For multiple files with deduplication:
Human: Translate all my English JSON files in the locales folder to German.
Claude: I'll translate all your English JSON files to German with deduplication.
<use_tool name="translate_multiple">
{
"pattern": "locales/en/*.json",
"targetLanguage": "de",
"outputPattern": "locales/de/{name}.json",
"showStats": true
}
</use_tool>
Translation complete! Processed 5 files with 23% deduplication savings.
MCP Tools Available
-
translate_json: Translate a single JSON file
inputFile
: Path to source filetargetLanguage
: Target language codeoutputFile
: Output file path
-
translate_multiple: Translate multiple files with deduplication
pattern
: File pattern or pathstargetLanguage
: Target language codeoutputPattern
: Output pattern with {dir}, {name}, {lang} variablesshowStats
: Show deduplication statistics (optional)
Integration with Static Site Generators
Working with YAML Files (Hugo, Jekyll, etc.)
Since translator-ai works with JSON files, you'll need to convert YAML to JSON and back. Here's a practical workflow:
Setup YAML conversion tools
# Install yaml conversion tools
npm install -g js-yaml
# or
pip install pyyaml
Hugo Example with YAML Conversion
- Create a translation script (
translate-hugo.sh
):
#!/bin/bash
# translate-hugo.sh - Translate Hugo YAML i18n files
# Function to translate YAML file
translate_yaml() {
local input_file=$1
local lang=$2
local output_file=$3
echo "Translating $input_file to $lang..."
# Convert YAML to JSON
npx js-yaml $input_file > temp_input.json
# Translate JSON
translator-ai temp_input.json -l $lang -o temp_output.json
# Convert back to YAML
npx js-yaml temp_output.json > $output_file
# Cleanup
rm temp_input.json temp_output.json
}
# Translate Hugo i18n files
translate_yaml themes/your-theme/i18n/en.yaml es themes/your-theme/i18n/es.yaml
translate_yaml themes/your-theme/i18n/en.yaml fr themes/your-theme/i18n/fr.yaml
translate_yaml themes/your-theme/i18n/en.yaml de themes/your-theme/i18n/de.yaml
- Python-based converter for more complex scenarios:
#!/usr/bin/env python3
# hugo-translate.py
import yaml
import json
import subprocess
import sys
import os
def yaml_to_json(yaml_file):
"""Convert YAML to JSON"""
with open(yaml_file, 'r', encoding='utf-8') as f:
data = yaml.safe_load(f)
return json.dumps(data, ensure_ascii=False, indent=2)
def json_to_yaml(json_str):
"""Convert JSON back to YAML"""
data = json.loads(json_str)
return yaml.dump(data, allow_unicode=True, default_flow_style=False)
def translate_yaml_file(input_yaml, target_lang, output_yaml):
"""Translate a YAML file using translator-ai"""
# Create temp JSON file
temp_json_in = 'temp_in.json'
temp_json_out = f'temp_out_{target_lang}.json'
try:
# Convert YAML to JSON
json_content = yaml_to_json(input_yaml)
with open(temp_json_in, 'w', encoding='utf-8') as f:
f.write(json_content)
# Run translator-ai
cmd = [
'translator-ai',
temp_json_in,
'-l', target_lang,
'-o', temp_json_out
]
subprocess.run(cmd, check=True)
# Read translated JSON and convert back to YAML
with open(temp_json_out, 'r', encoding='utf-8') as f:
translated_json = f.read()
yaml_content = json_to_yaml(translated_json)
# Write YAML output
with open(output_yaml, 'w', encoding='utf-8') as f:
f.write(yaml_content)
print(f"✓ Translated {input_yaml} to {output_yaml}")
finally:
# Cleanup temp files
for f in [temp_json_in, temp_json_out]:
if os.path.exists(f):
os.remove(f)
# Usage
if __name__ == "__main__":
languages = ['es', 'fr', 'de', 'ja']
for lang in languages:
translate_yaml_file(
'i18n/en.yaml',
lang,
f'i18n/{lang}.yaml'
)
Node.js Solution with Proper YAML Handling
Create translate-yaml.js
:
#!/usr/bin/env node
const fs = require('fs');
const yaml = require('js-yaml');
const { execSync } = require('child_process');
const path = require('path');
function translateYamlFile(inputPath, targetLang, outputPath) {
console.log(`Translating ${inputPath} to ${targetLang}...`);
// Read and parse YAML
const yamlContent = fs.readFileSync(inputPath, 'utf8');
const data = yaml.load(yamlContent);
// Write temporary JSON
const tempJsonIn = `temp_${path.basename(inputPath)}.json`;
const tempJsonOut = `temp_${path.basename(inputPath)}_${targetLang}.json`;
fs.writeFileSync(tempJsonIn, JSON.stringify(data, null, 2));
try {
// Translate using translator-ai
execSync(`translator-ai ${tempJsonIn} -l ${targetLang} -o ${tempJsonOut}`);
// Read translated JSON
const translatedData = JSON.parse(fs.readFileSync(tempJsonOut, 'utf8'));
// Convert back to YAML
const translatedYaml = yaml.dump(translatedData, {
indent: 2,
lineWidth: -1,
noRefs: true
});
// Write output YAML
fs.writeFileSync(outputPath, translatedYaml);
console.log(`✓ Created ${outputPath}`);
} finally {
// Cleanup
[tempJsonIn, tempJsonOut].forEach(f => {
if (fs.existsSync(f)) fs.unlinkSync(f);
});
}
}
// Example usage
const languages = ['es', 'fr', 'de'];
languages.forEach(lang => {
translateYamlFile(
'i18n/en.yaml',
lang,
`i18n/${lang}.yaml`
);
});
Real-world Hugo Workflow
Hugo supports two translation methods: by filename (about.en.md
, about.fr.md
) or by content directory (content/en/
, content/fr/
). Here's how to automate both:
Method 1: Translation by Filename
Create hugo-translate-files.sh
:
#!/bin/bash
# Translate Hugo content files using filename convention
SOURCE_LANG="en"
TARGET_LANGS=("es" "fr" "de" "ja")
# Find all English content files
find content -name "*.${SOURCE_LANG}.md" | while read -r file; do
# Extract base filename without language suffix
base_name="${file%.${SOURCE_LANG}.md}"
for lang in "${TARGET_LANGS[@]}"; do
output_file="${base_name}.${lang}.md"
# Skip if translation already exists
if [ -f "$output_file" ]; then
echo "Skipping $output_file (already exists)"
continue
fi
# Extract front matter
awk '/^---$/{p=1; next} p&&/^---$/{exit} p' "$file" > temp_frontmatter.yaml
# Convert front matter to JSON
npx js-yaml temp_frontmatter.yaml > temp_frontmatter.json
# Translate front matter
translator-ai temp_frontmatter.json -l "$lang" -o "temp_translated.json"
# Convert back to YAML
echo "---" > "$output_file"
npx js-yaml temp_translated.json >> "$output_file"
echo "---" >> "$output_file"
# Copy content (you might want to translate this too)
awk '/^---$/{p++} p==2{print}' "$file" | tail -n +2 >> "$output_file"
echo "Created $output_file"
done
# Cleanup
rm -f temp_frontmatter.yaml temp_frontmatter.json temp_translated.json
done
Method 2: Translation by Content Directory
- Setup Hugo config (
config.yaml
):
defaultContentLanguage: en
defaultContentLanguageInSubdir: false
languages:
en:
contentDir: content/en
languageName: English
weight: 1
es:
contentDir: content/es
languageName: Español
weight: 2
fr:
contentDir: content/fr
languageName: Français
weight: 3
# Rest of your config...
- Create translation script (
hugo-translate-dirs.js
):
#!/usr/bin/env node
const fs = require('fs-extra');
const path = require('path');
const yaml = require('js-yaml');
const { execSync } = require('child_process');
const glob = require('glob');
const SOURCE_LANG = 'en';
const TARGET_LANGS = ['es', 'fr', 'de'];
async function translateHugoContent() {
// Ensure target directories exist
for (const lang of TARGET_LANGS) {
await fs.ensureDir(`content/${lang}`);
}
// Find all content files in source language
const files = glob.sync(`content/${SOURCE_LANG}/**/*.md`);
for (const file of files) {
const relativePath = path.relative(`content/${SOURCE_LANG}`, file);
for (const lang of TARGET_LANGS) {
const targetFile = path.join(`content/${lang}`, relativePath);
// Skip if already translated
if (await fs.pathExists(targetFile)) {
console.log(`Skipping ${targetFile} (exists)`);
continue;
}
await translateFile(file, targetFile, lang);
}
}
}
async function translateFile(sourceFile, targetFile, targetLang) {
console.log(`Translating ${sourceFile} to ${targetLang}...`);
const content = await fs.readFile(sourceFile, 'utf8');
const frontMatterMatch = content.match(/^---\n([\s\S]*?)\n---/);
if (!frontMatterMatch) {
// No front matter, just copy
await fs.ensureDir(path.dirname(targetFile));
await fs.copyFile(sourceFile, targetFile);
return;
}
// Parse front matter
const frontMatter = yaml.load(frontMatterMatch[1]);
const body = content.substring(frontMatterMatch[0].length);
// Extract translatable fields
const translatable = {
title: frontMatter.title || '',
description: frontMatter.description || '',
summary: frontMatter.summary || '',
keywords: frontMatter.keywords || []
};
// Save for translation
await fs.writeJson('temp_meta.json', translatable);
// Translate
execSync(`translator-ai temp_meta.json -l ${targetLang} -o temp_translated.json`);
// Read translations
const translated = await fs.readJson('temp_translated.json');
// Update front matter
Object.assign(frontMatter, translated);
// Write translated file
await fs.ensureDir(path.dirname(targetFile));
const newContent = `---\n${yaml.dump(frontMatter)}---${body}`;
await fs.writeFile(targetFile, newContent);
// Cleanup
await fs.remove('temp_meta.json');
await fs.remove('temp_translated.json');
console.log(`✓ Created ${targetFile}`);
}
// Run translation
translateHugoContent().catch(console.error);
Hugo i18n Files Translation
- Install dependencies:
npm install -g translator-ai js-yaml
- Create a Makefile for easy translation:
# Makefile for Hugo translations
LANGUAGES := es fr de ja zh
SOURCE_YAML := i18n/en.yaml
THEME_DIR := themes/your-theme
.PHONY: translate
translate: $(foreach lang,$(LANGUAGES),translate-$(lang))
translate-%:
@echo "Translating to $*..."
@npx js-yaml $(SOURCE_YAML) > temp.json
@translator-ai temp.json -l $* -o temp_$*.json
@npx js-yaml temp_$*.json > i18n/$*.yaml
@rm temp.json temp_$*.json
@echo "✓ Created i18n/$*.yaml"
.PHONY: translate-theme
translate-theme:
@for lang in $(LANGUAGES); do \
make translate-theme-$$lang; \
done
translate-theme-%:
@echo "Translating theme to $*..."
@npx js-yaml $(THEME_DIR)/i18n/en.yaml > temp_theme.json
@translator-ai temp_theme.json -l $* -o temp_theme_$*.json
@npx js-yaml temp_theme_$*.json > $(THEME_DIR)/i18n/$*.yaml
@rm temp_theme.json temp_theme_$*.json
.PHONY: clean
clean:
@rm -f temp*.json
# Translate everything
.PHONY: all
all: translate translate-theme
Usage:
# Translate to all languages
make all
# Translate to specific language
make translate-es
# Translate theme files
make translate-theme
Complete Hugo Translation Workflow
Here's a comprehensive script that handles both content and i18n translations:
#!/usr/bin/env node
// hugo-complete-translator.js
const fs = require('fs-extra');
const path = require('path');
const yaml = require('js-yaml');
const { execSync } = require('child_process');
const glob = require('glob');
class HugoTranslator {
constructor(targetLanguages = ['es', 'fr', 'de']) {
this.targetLanguages = targetLanguages;
this.tempFiles = [];
}
async translateSite() {
console.log('Starting Hugo site translation...\n');
// 1. Translate i18n files
await this.translateI18nFiles();
// 2. Translate content
await this.translateContent();
// 3. Update config
await this.updateConfig();
console.log('\nTranslation complete!');
}
async translateI18nFiles() {
console.log('Translating i18n files...');
const i18nFiles = glob.sync('i18n/en.{yaml,yml,toml}');
for (const file of i18nFiles) {
const ext = path.extname(file);
for (const lang of this.targetLanguages) {
const outputFile = `i18n/${lang}${ext}`;
if (await fs.pathExists(outputFile)) {
console.log(` Skipping ${outputFile} (exists)`);
continue;
}
// Convert to JSON
const tempJson = `temp_i18n_${lang}.json`;
await this.convertToJson(file, tempJson);
// Translate
const translatedJson = `temp_i18n_${lang}_translated.json`;
execSync(`translator-ai ${tempJson} -l ${lang} -o ${translatedJson}`);
// Convert back
await this.convertFromJson(translatedJson, outputFile, ext);
// Cleanup
await fs.remove(tempJson);
await fs.remove(translatedJson);
console.log(` ✓ Created ${outputFile}`);
}
}
}
async translateContent() {
console.log('\nTranslating content...');
// Detect translation method
const useContentDirs = await fs.pathExists('content/en');
if (useContentDirs) {
await this.translateContentByDirectory();
} else {
await this.translateContentByFilename();
}
}
async translateContentByDirectory() {
const files = glob.sync('content/en/**/*.md');
for (const file of files) {
const relativePath = path.relative('content/en', file);
for (const lang of this.targetLanguages) {
const targetFile = path.join('content', lang, relativePath);
if (await fs.pathExists(targetFile)) continue;
await this.translateMarkdownFile(file, targetFile, lang);
}
}
}
async translateContentByFilename() {
const files = glob.sync('content/**/*.en.md');
for (const file of files) {
const baseName = file.replace('.en.md', '');
for (const lang of this.targetLanguages) {
const targetFile = `${baseName}.${lang}.md`;
if (await fs.pathExists(targetFile)) continue;
await this.translateMarkdownFile(file, targetFile, lang);
}
}
}
async translateMarkdownFile(sourceFile, targetFile, targetLang) {
const content = await fs.readFile(sourceFile, 'utf8');
const frontMatterMatch = content.match(/^---\n([\s\S]*?)\n---/);
if (!frontMatterMatch) {
await fs.copy(sourceFile, targetFile);
return;
}
const frontMatter = yaml.load(frontMatterMatch[1]);
const body = content.substring(frontMatterMatch[0].length);
// Translate front matter
const translatable = this.extractTranslatableFields(frontMatter);
const tempJson = `temp_content_${path.basename(sourceFile)}.json`;
const translatedJson = `${tempJson}.translated`;
await fs.writeJson(tempJson, translatable);
execSync(`translator-ai ${tempJson} -l ${targetLang} -o ${translatedJson}`);
const translated = await fs.readJson(translatedJson);
Object.assign(frontMatter, translated);
// Write translated file
await fs.ensureDir(path.dirname(targetFile));
const newContent = `---\n${yaml.dump(frontMatter)}---${body}`;
await fs.writeFile(targetFile, newContent);
// Cleanup
await fs.remove(tempJson);
await fs.remove(translatedJson);
console.log(` ✓ ${targetFile}`);
}
extractTranslatableFields(frontMatter) {
const fields = ['title', 'description', 'summary', 'keywords', 'tags'];
const translatable = {};
fields.forEach(field => {
if (frontMatter[field]) {
translatable[field] = frontMatter[field];
}
});
return translatable;
}
async convertToJson(inputFile, outputFile) {
const ext = path.extname(inputFile);
const content = await fs.readFile(inputFile, 'utf8');
let data;
if (ext === '.yaml' || ext === '.yml') {
data = yaml.load(content);
} else if (ext === '.toml') {
// You'd need a TOML parser here
throw new Error('TOML support not implemented in this example');
}
await fs.writeJson(outputFile, data, { spaces: 2 });
}
async convertFromJson(inputFile, outputFile, format) {
const data = await fs.readJson(inputFile);
let content;
if (format === '.yaml' || format === '.yml') {
content = yaml.dump(data, {
indent: 2,
lineWidth: -1,
noRefs: true
});
} else if (format === '.toml') {
throw new Error('TOML support not implemented in this example');
}
await fs.writeFile(outputFile, content);
}
async updateConfig() {
console.log('\nUpdating Hugo config...');
const configFile = glob.sync('config.{yaml,yml,toml,json}')[0];
if (!configFile) return;
// This is a simplified example - you'd need to properly parse and update
console.log(' ! Remember to update your config.yaml with language settings');
}
}
// Run the translator
if (require.main === module) {
const translator = new HugoTranslator(['es', 'fr', 'de']);
translator.translateSite().catch(console.error);
}
module.exports = HugoTranslator;
Using with Hugo Modules
If you're using Hugo Modules, you can create a translation module:
// go.mod
module github.com/yourusername/hugo-translator
go 1.19
require (
github.com/yourusername/your-theme v1.0.0
)
Then in your package.json
:
{
"scripts": {
"translate": "node hugo-complete-translator.js",
"translate:content": "node hugo-complete-translator.js --content-only",
"translate:i18n": "node hugo-complete-translator.js --i18n-only",
"build": "npm run translate && hugo"
}
}
Jekyll with YAML Front Matter
For Jekyll posts with YAML front matter:
#!/usr/bin/env python3
# translate-jekyll-posts.py
import os
import yaml
import json
import subprocess
import frontmatter
def translate_jekyll_post(post_path, target_lang, output_dir):
"""Translate Jekyll post including front matter"""
# Load post with front matter
post = frontmatter.load(post_path)
# Extract translatable front matter fields
translatable = {
'title': post.metadata.get('title', ''),
'description': post.metadata.get('description', ''),
'excerpt': post.metadata.get('excerpt', '')
}
# Save as JSON for translation
with open('temp_meta.json', 'w', encoding='utf-8') as f:
json.dump(translatable, f, ensure_ascii=False, indent=2)
# Translate
subprocess.run([
'translator-ai',
'temp_meta.json',
'-l', target_lang,
'-o', f'temp_meta_{target_lang}.json'
])
# Load translations
with open(f'temp_meta_{target_lang}.json', 'r', encoding='utf-8') as f:
translations = json.load(f)
# Update post metadata
for key, value in translations.items():
if value: # Only update if translation exists
post.metadata[key] = value
# Add language to metadata
post.metadata['lang'] = target_lang
# Save translated post
output_path = os.path.join(output_dir, os.path.basename(post_path))
with open(output_path, 'w', encoding='utf-8') as f:
f.write(frontmatter.dumps(post))
# Cleanup
os.remove('temp_meta.json')
os.remove(f'temp_meta_{target_lang}.json')
# Translate all posts
for lang in ['es', 'fr', 'de']:
os.makedirs(f'_posts/{lang}', exist_ok=True)
for post in os.listdir('_posts/en'):
if post.endswith('.md'):
translate_jekyll_post(
f'_posts/en/{post}',
lang,
f'_posts/{lang}'
)
Tips for YAML/JSON Conversion
- Preserve formatting: Use
js-yaml
with proper options to maintain YAML structure - Handle special characters: Ensure proper encoding (UTF-8) throughout
- Validate output: Some YAML features (anchors, aliases) may need special handling
- Consider TOML: For Hugo, you might also need to handle TOML config files
Alternative: Direct YAML Support (Feature Request)
If you frequently work with YAML files, consider creating a wrapper script that handles conversion automatically, or request YAML support as a feature for translator-ai.
Development
Building from source
git clone https://github.com/DatanoiseTV/translator-ai.git
cd translator-ai
npm install
npm run build
Testing locally
npm start -- test.json -l es -o output.json
License
This project requires attribution for both commercial and non-commercial use. See LICENSE file for details.
Contributing
Contributions are welcome! Please feel free to submit a Pull Request.
Support
For issues, questions, or suggestions, please open an issue on GitHub.
If you find this tool useful, consider supporting the development:
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.