trackio-mcp

trackio-mcp

An MCP server that enables AI agents to observe and interact with trackio experiment tracking, providing tools for managing ML experiments through natural language.

Category
Visit Server

README

trackio-mcp

PyPI version License: MIT CI

MCP (Model Context Protocol) server support for trackio experiment tracking

This package enables AI agents to observe and interact with trackio experiments through the Model Context Protocol (MCP). Simply import trackio_mcp before trackio to automatically enable MCP server functionality.

Features

  • Zero-code integration: Just import trackio_mcp before trackio
  • Automatic MCP server: Enables MCP server on all trackio deployments (local & Spaces)
  • Rich tool set: Exposes trackio functionality as MCP tools for AI agents
  • Spaces compatible: Works seamlessly with Hugging Face Spaces deployments
  • Drop-in replacement: No changes needed to existing trackio code

Installation

pip install trackio-mcp

Or with development dependencies:

pip install trackio-mcp[dev]

Quick Start

Basic Usage

Simply import trackio_mcp before importing trackio:

import trackio_mcp  # This enables MCP server functionality
import trackio as wandb

# Your existing trackio code works unchanged
wandb.init(project="my-experiment")
wandb.log({"loss": 0.1, "accuracy": 0.95})
wandb.finish()

The MCP server will be automatically available at:

  • Local: http://localhost:7860/gradio_api/mcp/sse
  • Spaces: https://your-space.hf.space/gradio_api/mcp/sse

Deploy to Hugging Face Spaces with MCP

import trackio_mcp
import trackio as wandb

# Deploy to Spaces with MCP enabled automatically
wandb.init(
    project="my-experiment", 
    space_id="username/my-trackio-space"
)

wandb.log({"loss": 0.1})
wandb.finish()

Standalone MCP Server

Launch a dedicated MCP server for trackio tools:

from trackio_mcp.tools import launch_trackio_mcp_server

# Launch standalone MCP server on port 7861
launch_trackio_mcp_server(port=7861, share=False)

Available MCP Tools

Once connected, AI agents can use these trackio tools:

Core Tools (via Gradio API)

  • log: Log metrics to a trackio run
  • upload_db_to_space: Upload local database to a Space

Extended Tools (via trackio-mcp)

  • get_projects: List all trackio projects
  • get_runs: Get runs for a specific project
  • filter_runs: Filter runs by name pattern
  • get_run_metrics: Get metrics data for a specific run
  • get_available_metrics: Get all available metric names for a project
  • load_run_data: Load and process run data with optional smoothing
  • get_project_summary: Get comprehensive project statistics

Example Agent Interaction

Human: "Show me the latest results from my 'image-classification' project"

Agent: I'll check your trackio projects and get the latest results.

[Tool: get_projects] → finds "image-classification" project
[Tool: get_runs] → gets runs for "image-classification" 
[Tool: get_run_metrics] → gets metrics for latest run
[Tool: get_available_metrics] → gets metric names

Agent: Your latest image-classification run achieved 94.2% accuracy with a final loss of 0.18. The model trained for 50 epochs with best validation accuracy of 94.7% at epoch 45.

MCP Client Configuration

<details> <summary><b>Claude Desktop</b></summary>

Add to ~/Library/Application Support/Claude/claude_desktop_config.json (macOS) or equivalent:

Public Spaces:

{
  "mcpServers": {
    "trackio": {
      "url": "https://your-space.hf.space/gradio_api/mcp/sse"
    }
  }
}

Private Spaces/Datasets:

{
  "mcpServers": {
    "trackio": {
      "url": "https://your-private-space.hf.space/gradio_api/mcp/sse",
      "headers": {
        "Authorization": "Bearer YOUR_HF_TOKEN"
      }
    }
  }
}

Local Development:

{
  "mcpServers": {
    "trackio": {
      "url": "http://localhost:7860/gradio_api/mcp/sse"
    }
  }
}

</details>

<details> <summary><b>Claude Code</b></summary>

See Claude Code MCP docs for more info.

Public Spaces:

claude mcp add --transport sse trackio https://your-space.hf.space/gradio_api/mcp/sse

Private Spaces/Datasets:

claude mcp add --transport sse --header "Authorization: Bearer YOUR_HF_TOKEN" trackio https://your-private-space.hf.space/gradio_api/mcp/sse

Local Development:

{
  "mcpServers": {
    "trackio": {
      "type": "sse",
      "url": "http://localhost:7860/gradio_api/mcp/sse"
    }
  }
}

</details>

<details> <summary><b>Cursor</b></summary>

Add to your Cursor ~/.cursor/mcp.json file or create .cursor/mcp.json in your project folder. See Cursor MCP docs for more info.

Public Spaces:

{
  "mcpServers": {
    "trackio": {
      "url": "https://your-space.hf.space/gradio_api/mcp/sse"
    }
  }
}

Private Spaces/Datasets:

{
  "mcpServers": {
    "trackio": {
      "url": "https://your-private-space.hf.space/gradio_api/mcp/sse",
      "headers": {
        "Authorization": "Bearer YOUR_HF_TOKEN"
      }
    }
  }
}

Local Development:

{
  "mcpServers": {
    "trackio": {
      "url": "http://localhost:7860/gradio_api/mcp/sse"
    }
  }
}

</details>

<details> <summary><b>Windsurf</b></summary>

Add to your Windsurf MCP config file. See Windsurf MCP docs for more info.

Public Spaces:

{
  "mcpServers": {
    "trackio": {
      "serverUrl": "https://your-space.hf.space/gradio_api/mcp/sse"
    }
  }
}

Private Spaces/Datasets:

{
  "mcpServers": {
    "trackio": {
      "serverUrl": "https://your-private-space.hf.space/gradio_api/mcp/sse",
      "headers": {
        "Authorization": "Bearer YOUR_HF_TOKEN"
      }
    }
  }
}

Local Development:

{
  "mcpServers": {
    "trackio": {
      "serverUrl": "http://localhost:7860/gradio_api/mcp/sse"
    }
  }
}

</details>

<details> <summary><b>VS Code</b></summary>

Add to .vscode/mcp.json. See VS Code MCP docs for more info.

Public Spaces:

{
  "mcp": {
    "servers": {
      "trackio": {
        "type": "http",
        "url": "https://your-space.hf.space/gradio_api/mcp/sse"
      }
    }
  }
}

Private Spaces/Datasets:

{
  "mcp": {
    "servers": {
      "trackio": {
        "type": "http", 
        "url": "https://your-private-space.hf.space/gradio_api/mcp/sse",
        "headers": {
          "Authorization": "Bearer YOUR_HF_TOKEN"
        }
      }
    }
  }
}

Local Development:

{
  "mcp": {
    "servers": {
      "trackio": {
        "type": "http",
        "url": "http://localhost:7860/gradio_api/mcp/sse"
      }
    }
  }
}

</details>

<details> <summary><b>Gemini CLI</b></summary>

Add to mcp.json in your project directory. See Gemini CLI Configuration for details.

Public Spaces:

{
  "mcpServers": {
    "trackio": {
      "command": "npx",
      "args": ["mcp-remote", "https://your-space.hf.space/gradio_api/mcp/sse"]
    }
  }
}

Private Spaces/Datasets:

{
  "mcpServers": {
    "trackio": {
      "command": "npx", 
      "args": ["mcp-remote", "https://your-private-space.hf.space/gradio_api/mcp/sse"],
      "env": {
        "HF_TOKEN": "YOUR_HF_TOKEN"
      }
    }
  }
}

Local Development:

{
  "mcpServers": {
    "trackio": {
      "command": "npx",
      "args": ["mcp-remote", "http://localhost:7860/gradio_api/mcp/sse"]
    }
  }
}

</details>

<details> <summary><b>Cline</b></summary>

Create .cursor/mcp.json (or equivalent for your IDE):

Public Spaces:

{
  "mcpServers": {
    "trackio": {
      "url": "https://your-space.hf.space/gradio_api/mcp/sse"
    }
  }
}

Private Spaces/Datasets:

{
  "mcpServers": {
    "trackio": {
      "url": "https://your-private-space.hf.space/gradio_api/mcp/sse",
      "headers": {
        "Authorization": "Bearer YOUR_HF_TOKEN"
      }
    }
  }
}

Local Development:

{
  "mcpServers": {
    "trackio": {
      "url": "http://localhost:7860/gradio_api/mcp/sse"
    }
  }
}

</details>

Configuration

Environment Variables

  • TRACKIO_DISABLE_MCP: Set to "true" to disable MCP functionality (default: MCP enabled)

Programmatic Control

import os
os.environ["TRACKIO_DISABLE_MCP"] = "true"  # Disable MCP
import trackio_mcp  # MCP won't be enabled
import trackio

How It Works

trackio-mcp uses monkey-patching to automatically:

  1. Enable MCP server: Sets mcp_server=True on all Gradio launches
  2. Enable API: Sets show_api=True to expose Gradio API endpoints
  3. Add tools: Registers additional trackio-specific MCP tools
  4. Preserve compatibility: No changes needed to existing trackio code

The package patches:

  • gradio.Blocks.launch() - Core Gradio launch method
  • trackio.ui.demo.launch() - Trackio dashboard launches
  • Adds new MCP endpoints at /gradio_api/mcp/sse

Deployment Examples

Local Development

import trackio_mcp
import trackio

# Start local tracking with MCP enabled
trackio.show()  # Dashboard + MCP server at http://localhost:7860

Public Spaces Deployment

import trackio_mcp
import trackio as wandb

# Deploy to public Spaces with MCP support
wandb.init(
    project="public-model",
    space_id="username/model-tracking"
)

wandb.log({"epoch": 1, "loss": 0.5})
wandb.finish()

Private Spaces/Datasets Deployment

import trackio_mcp
import trackio as wandb

# Deploy to private Spaces with private dataset
wandb.init(
    project="private-model",
    space_id="organization/private-model-tracking",  # Private space
    dataset_id="organization/private-model-metrics"  # Private dataset
)

wandb.log({"epoch": 1, "loss": 0.5})
wandb.finish()

CLI Interface

# Launch standalone MCP server
trackio-mcp server --port 7861

# Check status and configuration
trackio-mcp status

# Test MCP server functionality
trackio-mcp test --url http://localhost:7860

Security Considerations

  • Private Spaces: Use HF tokens for authentication with private spaces/datasets
  • Access Control: MCP server inherits trackio's access controls
  • Network Security: Consider firewall rules for production deployments
  • Token Management: Store HF tokens securely, use environment variables

Troubleshooting

MCP Server Not Available

import trackio_mcp
import trackio

# Check if MCP was disabled
import os
print("MCP Disabled:", os.getenv("TRACKIO_DISABLE_MCP"))

# Manual verification
trackio.show()  # Look for MCP server URL in output

Connection Issues

  1. Check URL: Ensure correct /gradio_api/mcp/sse endpoint
  2. Authentication: Add Bearer token for private Spaces/datasets
  3. Network: Verify firewall/proxy settings
  4. Dependencies: Ensure gradio[mcp] is installed

Tool Discovery Issues

# Test tools manually
from trackio_mcp.tools import register_trackio_tools

tools = register_trackio_tools()
tools.launch(mcp_server=True)  # Test tools interface

Contributing

  1. Fork the repository
  2. Install development dependencies: pip install -e .[dev]
  3. Make your changes
  4. Run tests: pytest
  5. Submit a pull request

License

MIT License - see LICENSE file.

Acknowledgments


Made with care for the AI research community

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured