
trackio-mcp
An MCP server that enables AI agents to observe and interact with trackio experiment tracking, providing tools for managing ML experiments through natural language.
README
trackio-mcp
MCP (Model Context Protocol) server support for trackio experiment tracking
This package enables AI agents to observe and interact with trackio experiments through the Model Context Protocol (MCP). Simply import trackio_mcp
before trackio
to automatically enable MCP server functionality.
Features
- Zero-code integration: Just import
trackio_mcp
beforetrackio
- Automatic MCP server: Enables MCP server on all trackio deployments (local & Spaces)
- Rich tool set: Exposes trackio functionality as MCP tools for AI agents
- Spaces compatible: Works seamlessly with Hugging Face Spaces deployments
- Drop-in replacement: No changes needed to existing trackio code
Installation
pip install trackio-mcp
Or with development dependencies:
pip install trackio-mcp[dev]
Quick Start
Basic Usage
Simply import trackio_mcp
before importing trackio
:
import trackio_mcp # This enables MCP server functionality
import trackio as wandb
# Your existing trackio code works unchanged
wandb.init(project="my-experiment")
wandb.log({"loss": 0.1, "accuracy": 0.95})
wandb.finish()
The MCP server will be automatically available at:
- Local:
http://localhost:7860/gradio_api/mcp/sse
- Spaces:
https://your-space.hf.space/gradio_api/mcp/sse
Deploy to Hugging Face Spaces with MCP
import trackio_mcp
import trackio as wandb
# Deploy to Spaces with MCP enabled automatically
wandb.init(
project="my-experiment",
space_id="username/my-trackio-space"
)
wandb.log({"loss": 0.1})
wandb.finish()
Standalone MCP Server
Launch a dedicated MCP server for trackio tools:
from trackio_mcp.tools import launch_trackio_mcp_server
# Launch standalone MCP server on port 7861
launch_trackio_mcp_server(port=7861, share=False)
Available MCP Tools
Once connected, AI agents can use these trackio tools:
Core Tools (via Gradio API)
- log: Log metrics to a trackio run
- upload_db_to_space: Upload local database to a Space
Extended Tools (via trackio-mcp)
- get_projects: List all trackio projects
- get_runs: Get runs for a specific project
- filter_runs: Filter runs by name pattern
- get_run_metrics: Get metrics data for a specific run
- get_available_metrics: Get all available metric names for a project
- load_run_data: Load and process run data with optional smoothing
- get_project_summary: Get comprehensive project statistics
Example Agent Interaction
Human: "Show me the latest results from my 'image-classification' project"
Agent: I'll check your trackio projects and get the latest results.
[Tool: get_projects] → finds "image-classification" project
[Tool: get_runs] → gets runs for "image-classification"
[Tool: get_run_metrics] → gets metrics for latest run
[Tool: get_available_metrics] → gets metric names
Agent: Your latest image-classification run achieved 94.2% accuracy with a final loss of 0.18. The model trained for 50 epochs with best validation accuracy of 94.7% at epoch 45.
MCP Client Configuration
<details> <summary><b>Claude Desktop</b></summary>
Add to ~/Library/Application Support/Claude/claude_desktop_config.json
(macOS) or equivalent:
Public Spaces:
{
"mcpServers": {
"trackio": {
"url": "https://your-space.hf.space/gradio_api/mcp/sse"
}
}
}
Private Spaces/Datasets:
{
"mcpServers": {
"trackio": {
"url": "https://your-private-space.hf.space/gradio_api/mcp/sse",
"headers": {
"Authorization": "Bearer YOUR_HF_TOKEN"
}
}
}
}
Local Development:
{
"mcpServers": {
"trackio": {
"url": "http://localhost:7860/gradio_api/mcp/sse"
}
}
}
</details>
<details> <summary><b>Claude Code</b></summary>
See Claude Code MCP docs for more info.
Public Spaces:
claude mcp add --transport sse trackio https://your-space.hf.space/gradio_api/mcp/sse
Private Spaces/Datasets:
claude mcp add --transport sse --header "Authorization: Bearer YOUR_HF_TOKEN" trackio https://your-private-space.hf.space/gradio_api/mcp/sse
Local Development:
{
"mcpServers": {
"trackio": {
"type": "sse",
"url": "http://localhost:7860/gradio_api/mcp/sse"
}
}
}
</details>
<details> <summary><b>Cursor</b></summary>
Add to your Cursor ~/.cursor/mcp.json
file or create .cursor/mcp.json
in your project folder. See Cursor MCP docs for more info.
Public Spaces:
{
"mcpServers": {
"trackio": {
"url": "https://your-space.hf.space/gradio_api/mcp/sse"
}
}
}
Private Spaces/Datasets:
{
"mcpServers": {
"trackio": {
"url": "https://your-private-space.hf.space/gradio_api/mcp/sse",
"headers": {
"Authorization": "Bearer YOUR_HF_TOKEN"
}
}
}
}
Local Development:
{
"mcpServers": {
"trackio": {
"url": "http://localhost:7860/gradio_api/mcp/sse"
}
}
}
</details>
<details> <summary><b>Windsurf</b></summary>
Add to your Windsurf MCP config file. See Windsurf MCP docs for more info.
Public Spaces:
{
"mcpServers": {
"trackio": {
"serverUrl": "https://your-space.hf.space/gradio_api/mcp/sse"
}
}
}
Private Spaces/Datasets:
{
"mcpServers": {
"trackio": {
"serverUrl": "https://your-private-space.hf.space/gradio_api/mcp/sse",
"headers": {
"Authorization": "Bearer YOUR_HF_TOKEN"
}
}
}
}
Local Development:
{
"mcpServers": {
"trackio": {
"serverUrl": "http://localhost:7860/gradio_api/mcp/sse"
}
}
}
</details>
<details> <summary><b>VS Code</b></summary>
Add to .vscode/mcp.json
. See VS Code MCP docs for more info.
Public Spaces:
{
"mcp": {
"servers": {
"trackio": {
"type": "http",
"url": "https://your-space.hf.space/gradio_api/mcp/sse"
}
}
}
}
Private Spaces/Datasets:
{
"mcp": {
"servers": {
"trackio": {
"type": "http",
"url": "https://your-private-space.hf.space/gradio_api/mcp/sse",
"headers": {
"Authorization": "Bearer YOUR_HF_TOKEN"
}
}
}
}
}
Local Development:
{
"mcp": {
"servers": {
"trackio": {
"type": "http",
"url": "http://localhost:7860/gradio_api/mcp/sse"
}
}
}
}
</details>
<details> <summary><b>Gemini CLI</b></summary>
Add to mcp.json
in your project directory. See Gemini CLI Configuration for details.
Public Spaces:
{
"mcpServers": {
"trackio": {
"command": "npx",
"args": ["mcp-remote", "https://your-space.hf.space/gradio_api/mcp/sse"]
}
}
}
Private Spaces/Datasets:
{
"mcpServers": {
"trackio": {
"command": "npx",
"args": ["mcp-remote", "https://your-private-space.hf.space/gradio_api/mcp/sse"],
"env": {
"HF_TOKEN": "YOUR_HF_TOKEN"
}
}
}
}
Local Development:
{
"mcpServers": {
"trackio": {
"command": "npx",
"args": ["mcp-remote", "http://localhost:7860/gradio_api/mcp/sse"]
}
}
}
</details>
<details> <summary><b>Cline</b></summary>
Create .cursor/mcp.json
(or equivalent for your IDE):
Public Spaces:
{
"mcpServers": {
"trackio": {
"url": "https://your-space.hf.space/gradio_api/mcp/sse"
}
}
}
Private Spaces/Datasets:
{
"mcpServers": {
"trackio": {
"url": "https://your-private-space.hf.space/gradio_api/mcp/sse",
"headers": {
"Authorization": "Bearer YOUR_HF_TOKEN"
}
}
}
}
Local Development:
{
"mcpServers": {
"trackio": {
"url": "http://localhost:7860/gradio_api/mcp/sse"
}
}
}
</details>
Configuration
Environment Variables
TRACKIO_DISABLE_MCP
: Set to"true"
to disable MCP functionality (default: MCP enabled)
Programmatic Control
import os
os.environ["TRACKIO_DISABLE_MCP"] = "true" # Disable MCP
import trackio_mcp # MCP won't be enabled
import trackio
How It Works
trackio-mcp
uses monkey-patching to automatically:
- Enable MCP server: Sets
mcp_server=True
on all Gradio launches - Enable API: Sets
show_api=True
to expose Gradio API endpoints - Add tools: Registers additional trackio-specific MCP tools
- Preserve compatibility: No changes needed to existing trackio code
The package patches:
gradio.Blocks.launch()
- Core Gradio launch methodtrackio.ui.demo.launch()
- Trackio dashboard launches- Adds new MCP endpoints at
/gradio_api/mcp/sse
Deployment Examples
Local Development
import trackio_mcp
import trackio
# Start local tracking with MCP enabled
trackio.show() # Dashboard + MCP server at http://localhost:7860
Public Spaces Deployment
import trackio_mcp
import trackio as wandb
# Deploy to public Spaces with MCP support
wandb.init(
project="public-model",
space_id="username/model-tracking"
)
wandb.log({"epoch": 1, "loss": 0.5})
wandb.finish()
Private Spaces/Datasets Deployment
import trackio_mcp
import trackio as wandb
# Deploy to private Spaces with private dataset
wandb.init(
project="private-model",
space_id="organization/private-model-tracking", # Private space
dataset_id="organization/private-model-metrics" # Private dataset
)
wandb.log({"epoch": 1, "loss": 0.5})
wandb.finish()
CLI Interface
# Launch standalone MCP server
trackio-mcp server --port 7861
# Check status and configuration
trackio-mcp status
# Test MCP server functionality
trackio-mcp test --url http://localhost:7860
Security Considerations
- Private Spaces: Use HF tokens for authentication with private spaces/datasets
- Access Control: MCP server inherits trackio's access controls
- Network Security: Consider firewall rules for production deployments
- Token Management: Store HF tokens securely, use environment variables
Troubleshooting
MCP Server Not Available
import trackio_mcp
import trackio
# Check if MCP was disabled
import os
print("MCP Disabled:", os.getenv("TRACKIO_DISABLE_MCP"))
# Manual verification
trackio.show() # Look for MCP server URL in output
Connection Issues
- Check URL: Ensure correct
/gradio_api/mcp/sse
endpoint - Authentication: Add Bearer token for private Spaces/datasets
- Network: Verify firewall/proxy settings
- Dependencies: Ensure
gradio[mcp]
is installed
Tool Discovery Issues
# Test tools manually
from trackio_mcp.tools import register_trackio_tools
tools = register_trackio_tools()
tools.launch(mcp_server=True) # Test tools interface
Contributing
- Fork the repository
- Install development dependencies:
pip install -e .[dev]
- Make your changes
- Run tests:
pytest
- Submit a pull request
License
MIT License - see LICENSE file.
Acknowledgments
- trackio - The excellent experiment tracking library
- Gradio - For built-in MCP server support
- Model Context Protocol - For the standardized AI tool protocol
Made with care for the AI research community
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.