Todo MCP Server
A robust Model Context Protocol server for managing todos with capabilities for task creation, filtering, and statistical analysis. It enables AI assistants to interact with todo datasets through specialized tools, structured resources, and intelligent productivity prompts.
README
Todo MCP Server
A robust Model Context Protocol (MCP) server for managing todos, built with TypeScript and the official MCP SDK. This implementation demonstrates modern MCP best practices including proper error handling, server capabilities configuration, and comprehensive tool/resource/prompt integration.
š Features
š ļø Tools (AI can execute)
create_todo- Create new todos with title, description, priority levels, and tagslist_todos- List and filter todos by status (completed/pending), priority, and tagsupdate_todo- Update any todo field including completion status and metadatadelete_todo- Remove todos by ID with confirmationtodo_stats- Generate comprehensive statistics and analytics
š Resources (AI can read)
todos://json- Complete todo dataset as structured JSONtodos://summary- Quick summary with counts, completion rates, and metrics
š¬ Prompts (AI templates)
daily_report- Generate professional daily todo reports with filteringprioritize_tasks- Get AI assistance with intelligent task prioritization
š Quick Start
Prerequisites
- Node.js 18+
- npm or yarn
- TypeScript knowledge (optional for usage)
Installation & Setup
# 1. Clone and install dependencies
git clone <repository-url>
cd todo-mcp-server
npm install
# 2. Build the TypeScript project
npm run build
# 3. Test with MCP Inspector (optional)
npm test
# 4. Configure with your MCP client
Configuration
For Cursor IDE:
Add to your Cursor settings (~/.cursor/settings.json):
{
"mcp-servers": {
"todo-manager": {
"command": "node",
"args": ["/path/to/your/todo-mcp-server/dist/index.js"],
"env": {},
"cwd": "/path/to/your/todo-mcp-server"
}
}
}
For Claude Desktop:
Add to ~/.claude_desktop_config.json:
{
"mcpServers": {
"todo-manager": {
"command": "node",
"args": ["/path/to/your/todo-mcp-server/dist/index.js"]
}
}
}
šÆ Usage Examples
Once connected to your MCP client, you can interact naturally:
Creating & Managing Todos
"Create a high-priority todo to review the quarterly report with tags 'work' and 'urgent'"
"Add a shopping task for groceries with medium priority"
"Mark the quarterly report todo as completed"
"Update my shopping task to high priority and add description 'organic produce'"
Viewing & Filtering
"Show me all high priority pending todos"
"List all completed todos from this week"
"Display todos tagged with 'work'"
"Show my todo statistics and completion rate"
AI-Powered Insights
"Generate a daily report for today excluding completed tasks"
"Help me prioritize my current pending tasks"
"Create a professional summary of my productivity"
šļø Architecture & Implementation
Modern MCP SDK Patterns
This implementation follows current MCP SDK best practices:
// High-level API - capabilities are automatically discovered
const server = new McpServer({
name: "todo-manager",
version: "1.0.0"
});
// The SDK automatically discovers capabilities based on what you register:
server.tool("create_todo", schema, handler); // Adds 'tools' capability
server.resource("todos://json", handler); // Adds 'resources' capability
server.prompt("daily_report", schema, handler); // Adds 'prompts' capability
// Comprehensive error handling
server.tool("create_todo", schema, async (params) => {
try {
// Implementation
return { content: [...] };
} catch (error) {
return {
content: [{ type: "text", text: `Error: ${error.message}` }],
isError: true
};
}
});
How Capability Discovery Works
- Server Initialization: Server declares or auto-discovers its capabilities
- Client Connection: Client connects and receives server capability information during handshake
- Dynamic Discovery: Client calls these methods to discover available features:
client.listTools()- Discover available toolsclient.listResources()- Discover available resourcesclient.listPrompts()- Discover available prompts
- Usage: Client can then call specific tools, read resources, or use prompts
The high-level McpServer API automatically handles capability advertisement based on what you actually register, making it much simpler to use.
Project Structure
todo-mcp-server/
āāā src/
ā āāā index.ts # Main server implementation with modern patterns
āāā dist/ # Compiled JavaScript output
āāā package.json # Dependencies and build scripts
āāā tsconfig.json # TypeScript configuration
āāā README.md # Documentation (this file)
Data Model
interface Todo {
id: string; // Unique identifier
title: string; // Todo title (required)
description?: string; // Optional detailed description
completed: boolean; // Completion status
priority: 'low' | 'medium' | 'high'; // Priority level
createdAt: Date; // Creation timestamp
updatedAt: Date; // Last modification timestamp
tags: string[]; // Organizational tags
}
š§ Development
Available Scripts
# Development mode with hot reload
npm run dev
# Production build
npm run build
# Run the server
npm start
# Test with MCP Inspector
npm test
# Lint and format code
npm run lint
npm run format
Testing with MCP Inspector
The MCP Inspector is the official testing tool:
# Install MCP Inspector globally
npm install -g @modelcontextprotocol/inspector
# Test your server
npx @modelcontextprotocol/inspector node dist/index.js
Error Handling & Logging
The server implements comprehensive error handling:
- Tool errors: Graceful failure with user-friendly messages
- Resource errors: Proper exception handling with context
- Process errors: Graceful shutdown and cleanup
- Validation errors: Zod schema validation with detailed feedback
Performance Considerations
- In-memory storage: Fast for development; replace with database for production
- Async operations: All operations are properly async/await
- Resource management: Proper cleanup on server shutdown
- Error isolation: Errors in one operation don't crash the server
š Production Deployment
Database Integration
Replace the in-memory Map with a proper database:
// Example with PostgreSQL
import { Pool } from 'pg';
const pool = new Pool({
connectionString: process.env.DATABASE_URL
});
// Implement CRUD operations with proper transactions
Environment Configuration
# .env file
NODE_ENV=production
DATABASE_URL=postgresql://user:pass@localhost/todos
LOG_LEVEL=info
PORT=3000
Monitoring & Observability
Consider adding:
- Structured logging (Winston, Pino)
- Metrics collection (Prometheus)
- Health check endpoints
- Request tracing
š® Extending the Server
Adding New Tools
server.tool(
"archive_todo",
{ id: z.string() },
async ({ id }) => {
// Implementation
}
);
Adding New Resources
server.resource(
"todos-by-date",
"todos://by-date/{date}",
async (uri, { date }) => {
// Implementation
}
);
Adding New Prompts
server.prompt(
"weekly_review",
"Generate a weekly productivity review",
{ week: z.string() },
async ({ week }) => {
// Implementation
}
);
š Learn More
MCP Resources
Advanced Topics
- Authentication: Implement OAuth or API key authentication
- Rate Limiting: Add request throttling for production use
- Caching: Implement Redis or in-memory caching
- Webhooks: Add real-time notifications
- Collaboration: Multi-user todo management
- Sync: Cross-device synchronization
š¤ Contributing
- Fork the repository
- Create a feature branch:
git checkout -b feature/amazing-feature - Follow the existing code style and patterns
- Add tests for new functionality
- Update documentation as needed
- Submit a pull request
Code Standards
- Use TypeScript with strict mode
- Follow the existing error handling patterns
- Add JSDoc comments for public APIs
- Ensure all tests pass
- Follow semantic versioning
š License
MIT License - see LICENSE file for details.
Built with ā¤ļø using the official Model Context Protocol TypeScript SDK
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.