TiddlyWiki MCP Server

TiddlyWiki MCP Server

Provides AI assistants with access to TiddlyWiki wikis via HTTP API, supporting tiddler management (create, update, delete, search) and semantic search capabilities using Ollama embeddings for natural language queries.

Category
Visit Server

README

TiddlyWiki MCP Server

A Model Context Protocol (MCP) server that provides AI assistants with access to TiddlyWiki wikis via the HTTP API. Supports semantic search using Ollama embeddings.

Features

MCP Tools

  • search_tiddlers - Search tiddlers using TiddlyWiki filter syntax, semantic similarity, or hybrid (both combined)
  • create_tiddler - Create new tiddlers with custom fields
  • update_tiddler - Update existing tiddlers with diff preview
  • delete_tiddler - Delete tiddlers with content preview

MCP Resources

  • filter-reference://syntax - Complete TiddlyWiki filter syntax reference

Semantic Search

When Ollama is available, the server provides semantic search capabilities:

  • Natural language queries find conceptually related tiddlers
  • Uses nomic-embed-text embeddings model
  • SQLite-vec for efficient vector similarity search
  • Background sync keeps embeddings up-to-date
  • Hybrid mode combines filter results with semantic reranking

Requirements

  • Node.js 22+
  • TiddlyWiki with HTTP API enabled (e.g., TiddlyWiki on Node.js with listen command)
  • Ollama (optional, for semantic search)

Build Prerequisites

This project uses native SQLite modules that require compilation. You'll need:

  • Linux: build-essential, Python 3
  • macOS: Xcode Command Line Tools (xcode-select --install)
  • Windows: Visual Studio Build Tools, Python 3

Installation

From npm (recommended)

TIDDLYWIKI_URL=http://localhost:8080 npx tiddlywiki-mcp-server

Or install globally:

npm install -g tiddlywiki-mcp-server
TIDDLYWIKI_URL=http://localhost:8080 tiddlywiki-mcp-server

From source

git clone https://github.com/ppetru/tiddlywiki-mcp.git
cd tiddlywiki-mcp
npm install
npm run build

Quick Start

1. Start TiddlyWiki with HTTP API

# Install TiddlyWiki if you haven't already
npm install -g tiddlywiki

# Create a new wiki and start it with HTTP API
tiddlywiki mywiki --init server
tiddlywiki mywiki --listen port=8080

2. (Optional) Set up Ollama for Semantic Search

# Install Ollama from https://ollama.ai
# Then pull the embedding model:
ollama pull nomic-embed-text

3. Start the MCP Server

TIDDLYWIKI_URL=http://localhost:8080 npx tiddlywiki-mcp-server

Configuration

All configuration is via environment variables. See .env.example for a complete reference.

Required

Variable Description
TIDDLYWIKI_URL URL of your TiddlyWiki server (e.g., http://localhost:8080)

Optional

Variable Default Description
MCP_TRANSPORT stdio Transport mode: stdio or http
MCP_PORT 3000 HTTP server port (when using http transport)
OLLAMA_URL http://localhost:11434 Ollama API URL
OLLAMA_MODEL nomic-embed-text Embedding model name
EMBEDDINGS_ENABLED true Enable/disable semantic search
EMBEDDINGS_DB_PATH ./embeddings.db SQLite database path for embeddings
AUTH_HEADER X-Oidc-Username HTTP header for authentication (can be any header your TiddlyWiki expects)
AUTH_USER mcp-user Username for TiddlyWiki API requests

Usage

stdio Mode (Claude Desktop)

Add to your Claude Desktop configuration (claude_desktop_config.json):

{
  "mcpServers": {
    "tiddlywiki": {
      "command": "npx",
      "args": ["tiddlywiki-mcp-server"],
      "env": {
        "TIDDLYWIKI_URL": "http://localhost:8080"
      }
    }
  }
}

HTTP Mode

Start the server:

TIDDLYWIKI_URL=http://localhost:8080 MCP_TRANSPORT=http MCP_PORT=3000 npx tiddlywiki-mcp-server

The server exposes:

  • GET /health - Health check endpoint
  • POST /mcp - MCP JSON-RPC endpoint (stateless mode)

Example Tool Usage

Filter search (TiddlyWiki filter syntax):

{
  "name": "search_tiddlers",
  "arguments": {
    "filter": "[tag[Journal]prefix[2025-01]]",
    "includeText": true
  }
}

Semantic search (natural language):

{
  "name": "search_tiddlers",
  "arguments": {
    "semantic": "times I felt anxious about work",
    "limit": 10
  }
}

Hybrid search (filter + semantic reranking):

{
  "name": "search_tiddlers",
  "arguments": {
    "filter": "[tag[Journal]]",
    "semantic": "productivity tips",
    "limit": 20
  }
}

Development

Setup

npm install

Running Tests

npm test

Tests run quickly (~1s) and include unit tests for all tool handlers.

Linting

npm run lint        # Check for issues
npm run format      # Fix formatting
npm run format:check # Check formatting only

Type Checking

npm run typecheck

Pre-commit Hooks

Pre-commit hooks are configured with lefthook and run automatically:

  1. Format check (Prettier)
  2. Lint (ESLint)
  3. Tests (Vitest)
  4. Type check (TypeScript)

Building

npm run build

Architecture

src/
├── index.ts              # Entry point, transport setup, server lifecycle
├── tiddlywiki-http.ts    # TiddlyWiki HTTP API client
├── service-discovery.ts  # URL resolution (direct URLs, Consul SRV, hostname:port)
├── filter-reference.ts   # Filter syntax documentation
├── logger.ts             # Structured logging
├── tools/                # MCP tool handlers
│   ├── types.ts          # Shared types and Zod schemas
│   ├── search-tiddlers.ts
│   ├── create-tiddler.ts
│   ├── update-tiddler.ts
│   └── delete-tiddler.ts
└── embeddings/           # Semantic search infrastructure
    ├── database.ts       # SQLite-vec database
    ├── ollama-client.ts  # Ollama API client
    └── sync-worker.ts    # Background embedding sync

Key Design Decisions

  • Stateless HTTP mode: Each request gets its own Server/Transport instance to prevent request ID collisions with concurrent clients
  • Graceful degradation: Semantic search is optional; the server works without Ollama
  • Token-aware responses: Search results are validated against token limits with pagination suggestions
  • Background sync: Embeddings are updated periodically without blocking requests

License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured