ThinkDrop Vision Service

ThinkDrop Vision Service

Provides screen capture, OCR text extraction, and visual language model scene understanding capabilities with continuous monitoring and automatic memory storage integration.

Category
Visit Server

README

Vision Service - MCP

Vision capabilities for ThinkDrop AI: screen capture, OCR, and VLM scene understanding.

Features

  • Screenshot Capture - Fast cross-platform screen capture
  • OCR - Text extraction using PaddleOCR (local, multilingual)
  • VLM - Scene understanding using MiniCPM-V 2.6 (lazy-loaded, optional)
  • Watch Mode - Continuous monitoring with change detection
  • Memory Integration - Auto-store to user-memory service as embeddings

Quick Start

# 1. Copy environment config
cp .env.example .env

# 2. Edit .env (set API keys, configure VLM, etc.)
nano .env

# 3. Start service
./start.sh

Service will be available at http://localhost:3006

Installation Options

Minimal (OCR Only - No GPU Required)

pip install -r requirements.txt
  • Screenshot + OCR only
  • ~200-500ms per capture
  • No VLM dependencies

Full (OCR + VLM - GPU Recommended)

# Uncomment VLM dependencies in requirements.txt
pip install torch transformers accelerate

# Or with CUDA support
pip install torch --index-url https://download.pytorch.org/whl/cu118
pip install transformers accelerate
  • Screenshot + OCR + VLM
  • 600-1500ms with GPU, 2-6s with CPU
  • ~2.4GB model download on first use

API Endpoints

Health Check

GET /health

Capture Screenshot

POST /vision/capture
{
  "region": [x, y, width, height],  # Optional
  "format": "png"
}

Extract Text (OCR)

POST /vision/ocr
{
  "region": [x, y, width, height],  # Optional
  "language": "en"                   # Optional
}

Describe Screen (VLM)

POST /vision/describe
{
  "region": [x, y, width, height],  # Optional
  "task": "Find the Save button",   # Optional focus
  "include_ocr": true,               # Include OCR text
  "store_to_memory": true            # Auto-store to user-memory
}

Start Watch Mode

POST /vision/watch/start
{
  "interval_ms": 2000,
  "change_threshold": 0.08,
  "run_ocr": true,
  "run_vlm": false,
  "task": "Monitor for errors"
}

Stop Watch Mode

POST /vision/watch/stop

Watch Status

GET /vision/watch/status

Configuration

Key environment variables in .env:

# Service
PORT=3006
API_KEY=your-vision-api-key-here

# OCR
OCR_ENGINE=paddleocr
OCR_LANGUAGE=en

# VLM (lazy-loaded)
VLM_ENABLED=true
VLM_MODEL=openbmb/MiniCPM-V-2_6
VLM_DEVICE=auto  # auto, cpu, cuda

# Watch
WATCH_DEFAULT_INTERVAL_MS=2000
WATCH_CHANGE_THRESHOLD=0.08

# User Memory Integration
USER_MEMORY_SERVICE_URL=http://localhost:3003
USER_MEMORY_API_KEY=your-user-memory-api-key

Performance

OCR Only (Minimal Setup)

  • Capture: 10-20ms
  • OCR: 200-500ms
  • Total: ~300-600ms per request
  • Memory: ~500MB

OCR + VLM (Full Setup)

  • Capture: 10-20ms
  • OCR: 200-500ms
  • VLM (GPU): 300-800ms
  • VLM (CPU): 2-5s
  • Total (GPU): ~600-1500ms
  • Total (CPU): ~2.5-6s
  • Memory: ~3-4GB (model loaded)

Watch Mode Strategy

Watch mode uses smart change detection to minimize VLM calls:

  1. Every interval: Capture + fingerprint comparison
  2. On change: Run OCR (if enabled)
  3. On significant change: Run VLM (if enabled)
  4. Auto-store: Send to user-memory service as embedding

This keeps VLM usage efficient while maintaining continuous awareness.

Integration with ThinkDrop AI

The vision service integrates with the MCP state graph:

// In AgentOrchestrator state graph
const visionResult = await mcpClient.callService('vision', 'describe', {
  include_ocr: true,
  store_to_memory: true,
  task: userMessage
});

// Result automatically stored as embedding in user-memory
// No screenshot files to manage!

Testing

Test Capture

curl -X POST http://localhost:3006/vision/capture \
  -H "Content-Type: application/json" \
  -d '{}'

Test OCR

curl -X POST http://localhost:3006/vision/ocr \
  -H "Content-Type: application/json" \
  -d '{}'

Test VLM (if enabled)

curl -X POST http://localhost:3006/vision/describe \
  -H "Content-Type: application/json" \
  -d '{"include_ocr": true, "store_to_memory": false}'

Test Watch

# Start
curl -X POST http://localhost:3006/vision/watch/start \
  -H "Content-Type: application/json" \
  -d '{"interval_ms": 2000, "run_ocr": true}'

# Status
curl http://localhost:3006/vision/watch/status

# Stop
curl -X POST http://localhost:3006/vision/watch/stop

Troubleshooting

OCR Not Working

  • Check PaddleOCR installation: pip list | grep paddleocr
  • Models download on first use (~100MB)
  • Check logs for download progress

VLM Not Loading

  • Ensure dependencies installed: pip list | grep transformers
  • Check available memory (need 4-8GB)
  • Set VLM_ENABLED=false to disable
  • Model downloads on first use (~2.4GB)

Performance Issues

  • CPU too slow: Disable VLM, use OCR only
  • Memory issues: Reduce watch interval, disable VLM
  • GPU not detected: Check CUDA installation

Architecture

vision-service/
├── server.py              # FastAPI app
├── src/
│   ├── services/
│   │   ├── screenshot.py  # mss wrapper
│   │   ├── ocr_engine.py  # PaddleOCR wrapper
│   │   ├── vlm_engine.py  # VLM wrapper (lazy)
│   │   └── watch_manager.py  # Watch loop
│   ├── routes/
│   │   ├── capture.py     # /vision/capture
│   │   ├── ocr.py         # /vision/ocr
│   │   ├── describe.py    # /vision/describe
│   │   └── watch.py       # /vision/watch/*
│   └── middleware/
│       └── validation.py  # API key validation
├── requirements.txt
├── start.sh
└── README.md

License

Part of ThinkDrop AI project.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured