TestRail MCP Server
A Model Context Protocol server that provides integration with TestRail, allowing AI assistants to interact with TestRail projects, test cases, test runs, and results.
README
TestRail MCP Server
A Model Context Protocol (MCP) server that provides integration with TestRail, allowing AI assistants to interact with TestRail projects, test cases, test runs, and results.
Features
Tools
- get_projects: Retrieve all TestRail projects
- get_project: Get details of a specific project
- get_test_cases: Retrieve test cases with optional filtering
- create_test_case: Create new test cases
- get_test_runs: Retrieve test runs for a project
- create_test_run: Create new test runs
- add_test_result: Add test results to test runs
- get_users: Retrieve TestRail users
- test_connection: Test the connection to TestRail
- parse_testrail_url: 🆕 Parse TestRail URLs and auto-call appropriate tools
Resources
- testrail://projects: Access to all TestRail projects
- testrail://users: Access to all TestRail users
Prompts
- test_case_template: Generate comprehensive test case templates
- test_run_summary: Generate detailed test run summary reports
Installation
- Clone this repository:
git clone <repository-url>
cd mcp-testrail
- Install dependencies:
npm install
- Build the project:
npm run build
Configuration
Create a .env file in the root directory with your TestRail configuration:
TESTRAIL_URL=https://your-company.testrail.io
TESTRAIL_USERNAME=your-email@company.com
TESTRAIL_API_KEY=your-api-key
DEFAULT_PROJECT_ID=1
Getting TestRail API Credentials
- Log in to your TestRail instance
- Go to your user profile (click on your name in the top-right corner)
- Navigate to the "API Keys" tab
- Generate a new API key
- Use your email address as the username and the generated key as the API key
Usage
With Claude Desktop
Add the server to your Claude Desktop configuration file (claude_desktop_config.json):
{
"mcpServers": {
"testrail": {
"command": "node",
"args": ["/path/to/mcp-testrail/dist/index.js"],
"env": {
"TESTRAIL_URL": "https://your-company.testrail.io",
"TESTRAIL_USERNAME": "your-email@company.com",
"TESTRAIL_API_KEY": "your-api-key"
}
}
}
}
Direct Usage
You can also run the server directly:
npm start
Or in development mode:
npm run dev
Development
Project Structure
src/
├── index.ts # Main MCP server implementation
├── testrail-client.ts # TestRail API client
└── types.ts # TypeScript type definitions
Available Scripts
npm run build: Build the TypeScript projectnpm run watch: Build and watch for changesnpm start: Start the compiled servernpm run dev: Start the server in development mode with ts-nodenpm run lint: Lint the source code
Building
npm run build
Testing
Test the connection to TestRail:
npm run dev
# Then use the test_connection tool
API Coverage
This MCP server covers the following TestRail API endpoints:
Projects
GET /get_projects- Get all projectsGET /get_project/{id}- Get project details
Test Cases
GET /get_cases/{project_id}- Get test casesGET /get_case/{id}- Get test case detailsPOST /add_case/{section_id}- Create test casePOST /update_case/{id}- Update test case
Test Runs
GET /get_runs/{project_id}- Get test runsGET /get_run/{id}- Get test run detailsPOST /add_run/{project_id}- Create test runPOST /close_run/{id}- Close test run
Test Results
GET /get_results/{test_id}- Get test resultsPOST /add_result/{test_id}- Add test resultPOST /add_result_for_case/{run_id}/{case_id}- Add result for specific case
Users
GET /get_users- Get all usersGET /get_user/{id}- Get user details
Suites & Sections
GET /get_suites/{project_id}- Get test suitesGET /get_sections/{project_id}- Get sectionsGET /get_milestones/{project_id}- Get milestones
Examples
URL Parsing (New Feature!)
Simply paste any TestRail URL and get the data automatically:
// Parse a test case URL
{
"url": "https://moneyforward.tmxtestrail.com/index.php?/cases/view/2322865"
}
// Automatically detects it's a test case and retrieves case ID 2322865
// Parse a test run URL
{
"url": "https://company.testrail.io/runs/view/456"
}
// Automatically detects it's a test run and retrieves run details
// Parse test cases list with filters
{
"url": "https://company.testrail.io/cases/123?suite_id=5§ion_id=10"
}
// Automatically retrieves filtered test cases
Creating a Test Case
// Using the create_test_case tool
{
"sectionId": 123,
"title": "Test user login functionality",
"type_id": 1,
"priority_id": 2,
"custom_steps_separated": [
{
"content": "Navigate to login page",
"expected": "Login page is displayed"
},
{
"content": "Enter valid credentials",
"expected": "User is logged in successfully"
}
]
}
Adding Test Results
// Using the add_test_result tool
{
"runId": 456,
"caseId": 789,
"status_id": 1, // Passed
"comment": "Test executed successfully",
"elapsed": "5m",
"version": "v1.2.3"
}
Error Handling
The server includes comprehensive error handling and will return detailed error messages for:
- Invalid TestRail credentials
- Network connectivity issues
- Invalid parameters
- TestRail API errors
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests if applicable
- Submit a pull request
License
MIT License - see LICENSE file for details.
Support
For issues and questions:
- Check the TestRail API documentation
- Verify your credentials and network connectivity
- Check the server logs for detailed error messages
- Open an issue in this repository
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.