Terraform Registry MCP Server

Terraform Registry MCP Server

Enables AI assistants to search and retrieve information about Terraform providers and modules from the public Terraform registry, including detailed documentation, version information, and resource specifications.

Category
Visit Server

README

Terraform Registry MCP Server

A Model Context Protocol (MCP) server that provides comprehensive access to the Terraform public registry. This server enables AI assistants to search and retrieve information about Terraform providers, modules, and documentation.

Features

Module Tools

  • 🔍 search_modules - Search for Terraform modules by name or keywords
  • 📦 get_module_details - Get detailed information about a specific module
  • 🏷️ get_latest_module_version - Get the latest version of a module
  • 📋 list_module_versions - List all available versions of a module

Provider Tools

  • 🔍 search_providers - Search for Terraform providers
  • 📦 get_provider_details - Get detailed information about a provider
  • 🏷️ get_latest_provider_version - Get the latest version of a provider
  • 📋 list_provider_versions - List all available versions of a provider
  • 📚 get_provider_docs - Fetch full provider documentation (setup, auth, version notes)
  • 📄 get_provider_resource_docs - Fetch complete resource docs (args, attributes, examples)
  • 📄 get_provider_data_source_docs - Fetch complete data source docs
  • 🔎 search_provider_docs - Search within provider documentation for specific errors, topics, or troubleshooting

New! Documentation tools now fetch the actual markdown content from the registry, including version-specific information, breaking changes, upgrade guides, and complete argument/attribute references.

Installation

Using Docker (Recommended)

Build and run with Docker Compose:

docker-compose up -d

Or build manually:

docker build -t terraform-registry-mcp-server .
docker run -d -p 3002:3002 --name terraform-registry-mcp-server \
  -e TRANSPORT_MODE=http \
  -e PORT=3002 \
  terraform-registry-mcp-server

Local Development

Install dependencies:

pip install -e .

Run in stdio mode (for local MCP clients):

terraform-mcp-server

Run in HTTP mode:

export TRANSPORT_MODE=http
export PORT=3002
terraform-mcp-server

Configuration

Environment Variables

  • TRANSPORT_MODE - Transport mode: stdio (default) or http
  • PORT - HTTP server port (default: 3002)

VS Code MCP Configuration

Add to your VS Code mcp.json:

{
  "mcpServers": {
    "terraform": {
      "command": "docker",
      "args": [
        "run",
        "-i",
        "--rm",
        "terraform-mcp-server"
      ]
    }
  }
}

Or for HTTP transport:

{
  "mcpServers": {
    "terraform": {
      "url": "http://localhost:3002/mcp"
    }
  }
}

Usage Examples

Search for AWS VPC modules

search_modules(query="vpc", provider="aws", limit=10)

Get module details

get_module_details(
    namespace="terraform-aws-modules",
    name="vpc",
    provider="aws"
)

Search for providers

search_providers(query="azure", tier="official")

Get latest provider version

get_latest_provider_version(namespace="hashicorp", name="aws")

Get provider documentation

# Get full provider overview with version info and breaking changes
get_provider_docs(namespace="hashicorp", name="azurerm")

# Get specific version documentation (useful for compatibility checks)
get_provider_docs(namespace="hashicorp", name="azurerm", version="3.0.0")

Get specific resource documentation

# Fetches complete documentation including all arguments and attributes
get_provider_resource_docs(
    namespace="hashicorp",
    name="aws",
    resource_name="aws_instance"
)

# Check a specific version's resource documentation
get_provider_resource_docs(
    namespace="hashicorp",
    name="azurerm",
    resource_name="azurerm_virtual_machine",
    version="3.85.0"
)

Get data source documentation

get_provider_data_source_docs(
    namespace="hashicorp",
    name="aws",
    data_source_name="aws_ami"
)

Deployment to Azure Container Apps

This server is designed for easy deployment to Azure Container Apps:

  1. Build and push to Azure Container Registry:
az acr build --registry <your-acr> --image terraform-mcp-server:latest .
  1. Deploy to Container Apps:
az containerapp create \
  --name terraform-mcp-server \
  --resource-group <your-rg> \
  --environment <your-env> \
  --image <your-acr>.azurecr.io/terraform-mcp-server:latest \
  --target-port 3002 \
  --ingress external \
  --env-vars TRANSPORT_MODE=http PORT=3002

Architecture

  • FastMCP - Uses the official MCP Python SDK with FastMCP for simplified server creation
  • StreamableHTTP Transport - Supports modern HTTP transport for cloud deployment
  • Public Registry Only - Focuses on public Terraform registry (no authentication required)
  • Lightweight - Minimal dependencies, fast startup

Comparison with HashiCorp's Server

This is a simplified version compared to HashiCorp's official terraform-mcp-server:

Included:

  • ✅ Public registry search (modules & providers)
  • ✅ Module and provider details
  • ✅ Version management
  • ✅ HTTP transport for cloud deployment
  • ✅ Docker support

Not Included:

  • ❌ HCP Terraform / Terraform Enterprise integration
  • ❌ Workspace management
  • ❌ Run execution
  • ❌ Variable management
  • ❌ Private registry access

License

MIT License

Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured