TA-Lib MCP Server
Provides technical analysis indicators like SMA, EMA, RSI, MACD, Bollinger Bands, and Stochastic through MCP, enabling AI assistants to perform financial market analysis and calculations on price data.
README
TA-Lib MCP Server
Technical analysis indicators MCP server and HTTP API for the Model Context Protocol.
Quick Start
# Install dependencies
uv sync --dev
# Copy logging configuration
cp logging.conf.example logging.conf
# Run MCP server with STDIO transport (default)
uv run python -m mcp_talib.cli --mode mcp --transport stdio
# Run MCP server with HTTP transport
uv run python -m mcp_talib.cli --mode mcp --transport http --port 8000
# Run HTTP API server only
uv run python -m mcp_talib.cli --mode api --port 8001
# Run CLI tools directly
uv run python -m mcp_talib.cli_tools list
uv run python -m mcp_talib.cli_tools call sma --close '[1,2,3,4,5]' --timeperiod 3
Architecture
This project provides three independent access methods:
1. MCP Server (--mode mcp)
- Pure MCP protocol implementation exposing all TA-Lib indicators as MCP tools
- Supports both STDIO and HTTP transports
- For use with MCP clients (Claude Desktop, MCP Inspector, MCP.js, etc.)
- No REST endpoints
Run with STDIO (for Claude Desktop):
uv run python -m mcp_talib.cli --mode mcp --transport stdio
Run with HTTP (for MCP Inspector or web clients):
uv run python -m mcp_talib.cli --mode mcp --transport http --port 8000
# Then connect MCP Inspector to http://localhost:8000/mcp
2. HTTP API Server (--mode api)
- Pure REST API with
/api/tools/*JSON endpoints - For programmatic HTTP access to indicators
- No MCP protocol, just clean REST
Run HTTP API:
uv run python -m mcp_talib.cli --mode api --port 8001
Example request:
curl -X POST http://localhost:8001/api/tools/sma \
-H 'Content-Type: application/json' \
-d '{"close": [1,2,3,4,5], "timeperiod": 3}'
3. CLI Tools
Direct command-line access to all indicators via Typer:
uv run python -m mcp_talib.cli_tools list
uv run python -m mcp_talib.cli_tools call sma --close '[1,2,3,4,5]' --timeperiod 3
Features
- All TA-Lib Overlap Studies: BBANDS, DEMA, EMA, HT_TRENDLINE, KAMA, MA, MAMA, MAVP, MIDPOINT, MIDPRICE, SAR, SAREXT, SMA, T3, TEMA, TRIMA, WMA
- Three Access Methods: MCP, HTTP REST, CLI
- Dual Transport: STDIO and HTTP for MCP
- Cross-platform: Works on Linux, macOS, Windows
- Comprehensive Testing: 26+ unit and integration tests
- Error Handling: Detailed error messages and validation
Logging Configuration
The server requires a logging.conf file for configuration. Copy the example:
cp logging.conf.example logging.conf
Customize logging levels, format, and output file in logging.conf. The server logs to console.log to maintain MCP protocol compliance.
Client Configuration
Claude Desktop Integration
-
Create a configuration file at
~/Library/Application Support/Claude/claude_desktop_config.json(macOS) or appropriate location for your OS. -
Add the MCP server configuration:
{
"mcpServers": {
"talib": {
"command": "uv",
"args": [
"run",
"python",
"-m",
"mcp_talib.cli",
"--mode",
"mcp",
"--transport",
"stdio"
],
"cwd": "/path/to/mcp-talib"
}
}
}
-
Restart Claude Desktop to load the TA-Lib server.
-
Verify installation by asking Claude: "What technical analysis tools do you have?"
MCP Inspector (HTTP)
For HTTP transport, configure MCP Inspector to connect to:
http://localhost:8000/mcp
Run the MCP server with HTTP:
uv run python -m mcp_talib.cli --mode mcp --transport http --port 8000
Important: The HTTP transport includes CORS middleware to support browser-based MCP clients like MCP Inspector. If you're behind a reverse proxy or need to restrict access, update the allow_origins setting in transport/http.py.
MCP.js Client Example
import { MCPServerClient } from '@modelcontextprotocol/client';
const client = new MCPServerClient({
name: 'talib',
command: 'uv',
args: ['run', 'python', '-m', 'mcp_talib.cli', '--mode', 'mcp', '--transport', 'stdio'],
cwd: process.cwd()
});
// List available tools
const tools = await client.listTools();
console.log('Available tools:', tools.map(t => t.name));
// Calculate SMA
const smaResult = await client.callTool('calculate_sma', {
close_prices: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
timeperiod: 5
});
console.log('SMA result:', smaResult);
HTTP API Client (Python)
import requests
# List available tools
response = requests.get('http://localhost:8001/api/tools')
tools = response.json()['tools']
print('Available tools:', tools)
# Calculate SMA
payload = {
'close': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
'timeperiod': 5
}
response = requests.post('http://localhost:8001/api/tools/sma', json=payload)
result = response.json()
print('SMA result:', result['values'])
Available Tools
The server provides MCP tools and HTTP endpoints for all TA-Lib overlap studies:
calculate_sma- Simple Moving Averagecalculate_ema- Exponential Moving Averagecalculate_rsi- Relative Strength Indexcalculate_bbands- Bollinger Bandscalculate_dema- Double Exponential Moving Averagecalculate_ht_trendline- Hilbert Transform Trendlinecalculate_kama- Kaufman Adaptive Moving Averagecalculate_ma- Moving Average (with matype)calculate_mama- MESA Adaptive Moving Averagecalculate_mavp- Moving Average Variable Periodcalculate_midpoint- Midpointcalculate_midprice- Midpoint Pricecalculate_sar- Parabolic SARcalculate_sarext- Parabolic SAR Extendedcalculate_t3- T3 Moving Averagecalculate_tema- Triple Exponential Moving Averagecalculate_trima- Triangular Moving Averagecalculate_wma- Weighted Moving Average
Development
# Run all tests
uv run pytest
# Run specific test file
uv run pytest tests/unit/test_sma.py -v
# Run with coverage
uv run pytest --cov=src/mcp_talib
# Format code
uv run black src/ tests/
uv run isort src/ tests/
# Lint code
uv run ruff check src/ tests/
TA-Lib Platform Requirements
This project uses the ta-lib Python bindings which require the native TA-Lib C library. On CI or developer machines, you must install the system TA-Lib library before installing Python dependencies.
Links and notes:
- TA-Lib (C library): https://ta-lib.org/ (download and build instructions)
- ta-lib-python (Python bindings): https://github.com/TA-Lib/ta-lib-python
Example (Ubuntu) CI steps:
# Install build dependencies
sudo apt-get update && sudo apt-get install -y build-essential wget
# Download and build TA-Lib C library
wget http://prdownloads.sourceforge.net/ta-lib/ta-lib-0.4.0-src.tar.gz
tar -xzf ta-lib-0.4.0-src.tar.gz
cd ta-lib
./configure --prefix=/usr
make
sudo make install
# Then install Python package
pip install TA-Lib
If you prefer not to build the C library, use pre-built wheels where available or run tests in an environment that provides TA-Lib (e.g., manylinux CI images).
HTTP API & CLI
This project exposes the same MCP tools as both HTTP JSON endpoints and a Typed CLI (Typer).
HTTP Endpoint
POST /api/tools/{tool_name}
Request JSON: { "close": [..], ...params } (e.g., timeperiod)
Response JSON: { "success": true, "values": [...], "metadata": {...} }
Example:
curl -X POST http://localhost:8000/api/tools/sma \
-H 'Content-Type: application/json' \
-d '{"close": [1,2,3,4,5], "timeperiod": 3}'
MCP Endpoint
The MCP endpoint remains at /mcp for MCP clients (MCP Inspector, MCP.js, etc.). The HTTP API mounts the MCP app so both APIs coexist.
CLI (Typer)
Access tools from the command line via src/mcp_talib/cli_tools.py:
List available tools:
uv run python -m mcp_talib.cli_tools list
Call a tool:
uv run python -m mcp_talib.cli_tools call sma --close '[1,2,3,4,5]' --timeperiod 3
Implementation Notes
- Requests are validated using Pydantic
- The underlying indicator implementations are the single source of truth (registered in the MCP registry)
- HTTP API and CLI call the same code so results match exactly
- For browser clients, CORS is enabled and
mcp-session-idis exposed in responses
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.