Swarms MCP Documentation Server

Swarms MCP Documentation Server

An Agent Framework Documentation server that enables AI agents to efficiently retrieve information from documentation databases using hybrid semantic and keyword search for seamless agent integration.

Category
Visit Server

README

🐝 Swarms MCP Documentation Server

<p align="center"> <img src="https://img.shields.io/badge/Windsurf_Ready-✅-orange" alt="IDE Ready"> <img src="https://img.shields.io/badge/Error_Tolerant-✅-green" alt="Error Tolerant"> <img src="https://img.shields.io/badge/Dynamic_MD_Loader-✅-blue" alt="Dynamic MD Loader"> <img src="https://img.shields.io/badge/Healthcheck_Tool-✅-success" alt="Healthcheck Tool"> <img src="https://img.shields.io/badge/Smart_Load_Logs-✅-purple" alt="Smart Load Logs"> </p>

Version 2.2


📖 Description

This program is an Agent Framework Documentation MCP Server built on FastMCP, designed to enable AI agents to efficiently retrieve information from your documentation database. It combines hybrid semantic (vector) and keyword (BM25) search, chunked indexing, and a robust FastMCP tools API for seamless agent integration.

Key Capabilities:

  • Efficient, chunk-level retrieval using both semantic and keyword search
  • Agents can query, list, and retrieve documentation using FastMCP tools
  • Local-first, low-latency design (all data indexed and queried locally)
  • Automatic reindexing on file changes
  • Modular: add any repos to corpora/, support for all major filetypes
  • Extensible: add new tools, retrievers, or corpora as needed

Main modules:

  • embed_documents.py → Loads, chunks, and embeds documents
  • swarms_server.py → Brings up the MCP server and FastMCP tools


🌟 Key Features

  • Hybrid Retriever 🔍: Combines semantic and keyword search.
  • Dynamic Markdown Handling 📄: Smart loader based on file size.
  • Specialized Loaders ⚙️: .py, .ipynb, .md, .txt, .yaml, .yml.
  • Chunk and File Summaries 📈: Displays chunk counts along with file counts.
  • Live Watchdog 🔥: Instantly responds to any changes in corpora/.
  • User Confirmation for Costs ✅: Confirms before expensive embeddings.
  • Healthcheck Endpoint 🚑: Ensure server is ready for use.
  • Local-First 🗂️: All repos indexed locally without external dependencies.
  • Safe Deletion Helper 🔥: Auto-delete broken/mismatched indexes.

🏗️ Version History

Version Date Highlights
2.2 2025‑04‑25 Split embed/load from server; full chunk counting in loading summaries
1.0 2025‑04‑25 Dynamic Markdown loader, color logs, Healthcheck tool
0.7 2025‑04‑25 Specialized file loaders for .py, .ipynb, .md
0.5 2025‑04‑10 OpenAI large model embeddings, extended MCP tools
0.1 2025‑04‑10 Initial version with generic loaders

📚 Managing Your Corpora (Local Repos)

Because Swarms and other frameworks are very large, full corpora are not pushed to GitHub.

Instead, you clone them manually under corpora/:

# Inside your project folder:
cd corpora/

# Clone useful frameworks:
git clone https://github.com/SwarmsAI/Swarms
git clone https://github.com/SwarmsAI/Swarms-Examples
git clone https://github.com/microsoft/autogen
git clone https://github.com/langchain-ai/langgraph
git clone https://github.com/openai/openai-agent-sdk

Notes:

  • Add any repo — public, private, custom.
  • Build your own custom AI knowledge base locally.
  • Large repos (>500MB) are fine; all indexing is local.

🚀 Quick Start

# 1. Activate virtual environment
venv\Scripts\Activate.ps1

# 2. Install all dependencies
pip install -r requirements.txt

# 3. Configure OpenAI API Key
echo OPENAI_API_KEY=sk-... > .env

# 4. (Load and embed documents
python embed_documents.py

# 5. Start MCP server
python swarms_server.py
# If no index is found, the server will prompt you to embed documents automatically.

⚙️ Configuration

  • Corpus: Drop repos inside corpora/
  • Environment Variables:
    • .env must contain OPENAI_API_KEY
  • Index File Support:
    • Both chroma-collections.parquet and chroma.sqlite3 are supported. .parquet is preferred if both exist.
  • Auto-Embedding:
    • If no index is found, the server will prompt you to embed and index your documents automatically.
  • Optional:
    • Disable Chroma compaction if you prefer:
      setx CHROMA_COMPACTION_SERVICE__COMPACTOR__DISABLED_COLLECTIONS "swarms_docs"
      
  • Command-Line Flags:
    • --reindex → trigger a refresh reindex during server run.

🔄 File Watching & Auto Reindexing

The MCP Server watches corpora/ for any file changes:

  • Any modification, creation, or deletion triggers a live reindex.
  • No need to restart the server.

🛠️ Available FastMCP Tools

Tool Description
swarm_docs.search Search relevant documentation chunks
swarm_docs.list_files List all indexed files
swarm_docs.get_chunk Get a specific chunk by path and index
swarm_docs.reindex Force reindex (full or incremental)
swarm_docs.healthcheck Check MCP Server status

❓ Troubleshooting

  • Q: I get 'No valid existing index found' when starting the server.
    • A: The server will now prompt you to embed and index documents. Accept the prompt to proceed, or run python embed_documents.py manually first.
  • Q: Which index file is used?
    • A: The server will use chroma-collections.parquet if available, otherwise chroma.sqlite3.
  • Q: I want to force a reindex.
    • A: Run python swarms_server.py --reindex or use the swarm_docs.reindex tool.

📋 Example Usage

# Search the documentation
result = swarm_docs.search("How do I load a notebook?")
print(result)

# List all available files
files = swarm_docs.list_files()
print(files)

# Get a specific document chunk
chunk = swarm_docs.get_chunk(path="examples/agent.py", chunk_idx=2)
print(chunk["content"])

🧰 Extending & Rebuilding

  • Add new docs → drop into corpora/, then:

    python swarms_server.py --reindex
    
  • Schema changes → (e.g. different metadata structure):

    python swarms_server.py --reindex --full
    
  • Add new repo → Drop folder under corpora/, reindex.

  • Recommended for mostly read-only repos:

    setx CHROMA_COMPACTION_SERVICE__COMPACTOR__DISABLED_COLLECTIONS "swarms_docs"
    

🔗 IDE Integration

Plug directly into Windsurf Cascade:

"swarms": {
  "command": "C:/…/Swarms/venv/Scripts/python.exe",
  "args": ["swarms_server.py"]
}

Then you can access swarm_docs.* tools from Cascade automations.


📦 Requirements

💡 Python 3.11 Environment Required

Create your environment explicitly:

python3.11 -m venv venv

Then install with:

pip install -r requirements.txt

✅ MCP Server Ready

After boot:

  • Proper loading summaries
  • Safe confirmation before expensive actions
  • Auto file watching and reindexing
  • Windsurf plug-in ready
  • Full tool coverage

You're good to cascade it! 🏄‍♂️


📈 Flow Diagram

                          +------------------+
                          |    🖥️ MCP Server  |
                          +------------------+
                                  |
     +---------------------------------------------------+
     |                                                   |
+-------------+                                     +-----------------+
|  📁 Corpora |                                     | 🔎 FastMCP Tools |
|  Folder     |                                     | (search, list,   |
|  (markdown, |                                     | get_chunk, etc.) |
|  code, etc) |                                     +-----------------+
+-------------+                                               |
      |                                                       |
+-----------------+                                   +----------------+
|  📚 Loaders      |                                   | 🧠 Ensemble    |
| (Python, MD, TXT)|                                   | Retriever (BM25|
|  Split into Chunks|                                  | + Chroma)      |
+-----------------+                                   +----------------+
      |                                                       |
+-----------------+                                   +----------------+
| ✂️ Text Splitter |                                   | 🧩 Similarity   |
| (RecursiveCharacter) |                              | Search (chunks) |
+-----------------+                                   +----------------+
      |                                                       |
+-----------------+                                   +----------------+
| 💾 Embed chunks  |  —OpenAI Embedding (small)—>    | 🛢️ Chroma Vector |
| via OpenAI API  |                                   | DB (Local Store) |
+-----------------+                                   +----------------+
      |                                                       |
+-----------------+                                   +----------------+
| 📡 Reindex Watcher|                                  | 👀 File Watchdog |
| (Auto detect      |                                  | (Auto reindex   |
| new/modified files|                                  | on file events) |
+-----------------+                                   +----------------+

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured