Superset MCP Server

Superset MCP Server

An MCP server for Apache Superset that enables AI models to manage dashboards, create charts with auto-detection, and execute SQL queries programmatically. It utilizes stateless HTTP transport to ensure compatibility with integration tools like Open WebUI.

Category
Visit Server

README

šŸš€ Superset MCP Server (Streamable HTTP)

MCP (Model Context Protocol) Server untuk Apache Superset yang memungkinkan integrasi chatbot dengan Superset untuk membuat dashboard, chart, dan mengeksekusi query SQL secara programatis.

✨ Fitur

  • šŸ“Š Dashboard Management - List, get, create dashboard dan tambahkan chart ke dashboard
  • šŸ“ˆ Chart Management - List, get, create chart dengan auto-detection schema
  • šŸ—ƒļø Dataset Management - List datasets dan get schema kolom
  • šŸ” SQL Execution - Eksekusi query SQL langsung ke database Superset
  • šŸ”„ Stateless HTTP - Menggunakan Streamable HTTP transport untuk kompatibilitas dengan Open WebUI
  • šŸ” Auto Authentication - Otomatis login dan refresh token ke Superset

šŸ› ļø Teknologi

  • Runtime: Node.js + TypeScript
  • Transport: Express.js + JSON-RPC 2.0
  • Protocol: MCP (Model Context Protocol)
  • Client: Axios untuk HTTP requests

šŸ“‹ Prasyarat

  • Node.js v18 atau lebih baru
  • Apache Superset yang sudah running
  • NPM atau Yarn

⚔ Quick Start

1. Clone & Install Dependencies

git clone <repository-url>
cd superset-mcp
npm install

2. Konfigurasi Environment

Salin file .env.example ke .env dan sesuaikan konfigurasinya:

cp .env.example .env

Isi konfigurasi di file .env:

# Superset Configuration
SUPERSET_URL=http://localhost:8088
SUPERSET_USERNAME=admin
SUPERSET_PASSWORD=admin

# MCP Server Configuration
MCP_PORT=3000

3. Build & Run

# Build TypeScript
npm run build

# Jalankan server
npm start

Atau untuk development dengan hot-reload:

npm run dev

4. Verifikasi Server

Akses health check endpoint:

curl http://localhost:3000/health

Response yang diharapkan:

{
  "status": "ok",
  "server": "superset-mcp",
  "version": "1.0.0",
  "mode": "stateless",
  "tools": ["list_dashboards", "get_dashboard", "create_dashboard", ...]
}

šŸ”Œ Integrasi dengan Open WebUI

Konfigurasi di Open WebUI

  1. Buka Admin Panel → Tools → Tool Connections
  2. Tambahkan MCP Server baru:
    • Name: Superset MCP
    • Type: MCP (Streamable HTTP)
    • URL: http://YOUR_SERVER_IP:3000/mcp
  3. Save dan test koneksi

šŸ”§ Available Tools

Dashboard Tools

Tool Deskripsi
list_dashboards Mendapatkan semua dashboard yang tersedia
get_dashboard Detail dashboard termasuk chart-chart di dalamnya
create_dashboard Membuat dashboard baru
add_chart_to_dashboard Menambahkan satu chart ke dashboard
add_charts_to_dashboard Menambahkan multiple charts ke dashboard (recommended)

Chart Tools

Tool Deskripsi
list_charts Mendapatkan semua chart yang tersedia
get_chart Detail konfigurasi chart
get_chart_data Fetch data dari chart
create_chart Membuat chart baru (manual config)
create_chart_auto Membuat chart dengan auto-detection schema

Dataset Tools

Tool Deskripsi
list_datasets Mendapatkan semua datasets/tables
get_dataset_schema Mendapatkan definisi kolom dari dataset

SQL Tools

Tool Deskripsi
list_databases Mendapatkan semua koneksi database
execute_sql Eksekusi query SQL ke database

šŸ“š Contoh Penggunaan

Membuat Chart dengan Auto-Detection

"Buatkan bar chart untuk dataset sales_data yang menampilkan total revenue per bulan"

AI akan menggunakan create_chart_auto untuk:

  1. Menganalisis schema dataset
  2. Mendeteksi kolom waktu (x_axis)
  3. Mendeteksi kolom numeric untuk metrics
  4. Membuat chart dengan konfigurasi optimal

Membuat Dashboard dengan Multiple Charts

"Buatkan dashboard Sales Overview dengan 3 chart: line chart revenue, pie chart by category, dan table top products"

AI akan:

  1. create_dashboard - Membuat dashboard baru
  2. create_chart_auto (3x) - Membuat setiap chart
  3. add_charts_to_dashboard - Menambahkan semua chart sekaligus dengan layout optimal

šŸ—ļø Struktur Project

superset-mcp/
ā”œā”€ā”€ src/
│   ā”œā”€ā”€ index.ts          # Entry point
│   ā”œā”€ā”€ server.ts         # Express server & MCP tools
│   └── superset-client.ts # Superset API client
ā”œā”€ā”€ dist/                  # Compiled JavaScript
ā”œā”€ā”€ .env                   # Environment variables
ā”œā”€ā”€ .env.example           # Example environment
ā”œā”€ā”€ package.json
ā”œā”€ā”€ tsconfig.json
└── README.md

šŸ”— API Endpoints

Endpoint Method Deskripsi
/health GET Health check
/mcp POST MCP JSON-RPC requests
/mcp GET SSE streaming (keepalive)
/mcp DELETE Session cleanup

āš™ļø Environment Variables

Variable Default Deskripsi
SUPERSET_URL http://localhost:8088 URL Superset instance
SUPERSET_USERNAME admin Username untuk login
SUPERSET_PASSWORD admin Password untuk login
MCP_PORT 3000 Port untuk MCP server

šŸ› Troubleshooting

1. Authentication Failed

Pastikan credentials di .env sudah benar. Server akan otomatis refresh token jika expired.

2. CORS Error

Server sudah dikonfigurasi untuk menerima requests dari semua origin. Jika masih error, pastikan firewall tidak memblokir port.

3. Chart Tidak Menampilkan Data

Gunakan create_chart_auto daripada create_chart untuk auto-detection metrics dan dimensions.

šŸ“„ License

MIT License

šŸ¤ Contributing

Contributions are welcome! Feel free to open issues atau pull requests.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured