Structured Thinking MCP Server

Structured Thinking MCP Server

A TypeScript Model Context Protocol (MCP) server to allow LLMs to programmatically construct mind maps to explore an idea space, with enforced "metacognitive" self-reflection.

Promptly-Technologies-LLC

Research & Data
Visit Server

README

Structured Thinking MCP Server

A TypeScript Model Context Protocol (MCP) server based on Arben Ademi's Sequential Thinking Python server. The motivation for this project is to allow LLMs to programmatically construct mind maps to explore an idea space, with enforced "metacognitive" self-reflection.

Setup

Set the tool configuration in Claude Desktop, Cursor, or another MCP client as follows:

{
  "structured-thinking": {
    "command": "npx",
    "args": ["-y", "structured-thinking"]
  }
}

Overview

Thought Quality Scores

When an LLM captures a thought, it assigns that thought a quality score between 0 and 1. This score is used, in combination with the thought's stage, for providing "metacognitive" feedback to the LLM how to "steer" its thinking process.

Thought Stages

Each thought is tagged with a stage (e.g., Problem Definition, Analysis, Ideation) to help manage the life-cycle of the LLM's thinking process. In the current implementation, these stages play a very important role. In effect, if the LLM spends too long in a given stage or is having low-quality thoughts in the current stage, the server will provide feedback to the LLM to "steer" its thinking toward other stages, or at least toward thinking strategies that are atypical of the current stage. (E.g., in deductive mode, the LLM will be encouraged to consider more creative thoughts.)

Thought Branching

The LLM can spawn “branches” off a particular thought to explore different lines of reasoning in parallel. Each branch is tracked separately, letting you manage scenarios where multiple solutions or ideas should coexist.

Memory Management

The server maintains a "short-term" memory buffer of the LLM's ten most recent thoughts, and a "long-term" memory of thoughts that can be retrieved based on their tags for summarization of the entire history of the LLM's thinking process on a given topic.

Limitations

Naive Metacognitive Monitoring

Currently, the quality metrics and metacognitive feedback are derived mechanically from naive stage-based multipliers applied to a single self-reported quality score.

As part of the future work, I plan to add more sophisticated metacognitive feedback, including semantic analysis of thought content, thought verification processes, and more intelligent monitoring for reasoning errors.

Lack of User Interface

Currently, the server stores all thoughts in memory, and does not persist them to a file or database. There is also no user interface for reviewing the thought space or visualizing the mind map.

As part of the future work, I plan to incorporate a simple visualization client so the user can watch the thought graph evolve.

MCP Tools

The server exposes the following MCP tools:

capture_thought

Create a thought in the thought history, with metadata about the thought's type, quality, content, and relationships to other thoughts.

Parameters:

  • thought: The content of the current thought
  • thought_number: Current position in the sequence
  • total_thoughts: Expected total number of thoughts
  • next_thought_needed: Whether another thought should follow
  • stage: Current thinking stage (e.g., "Problem Definition", "Analysis")
  • is_revision (optional): Whether this revises a previous thought
  • revises_thought (optional): Number of thought being revised
  • branch_from_thought (optional): Starting point for a new thought branch
  • branch_id (optional): Identifier for the current branch
  • needs_more_thoughts (optional): Whether additional thoughts are needed
  • score (optional): Quality score (0.0 to 1.0)
  • tags (optional): Categories or labels for the thought

revise_thought

Revise a thought in the thought history, with metadata about the thought's type, quality, content, and relationships to other thoughts.

Parameters:

  • thought_id: The ID of the thought to revise
  • Parameters from capture_thought

retrieve_relevant_thoughts

Retrieve thoughts from long-term storage that share tags with the specified thought.

Parameters:

  • thought_id: The ID of the thought to retrieve relevant thoughts for

get_thinking_summary

Generate a comprehensive summary of the entire thinking process.

clear_thinking_history

Clear all recorded thoughts and reset the server state.

License

MIT

Recommended Servers

Crypto Price & Market Analysis MCP Server

Crypto Price & Market Analysis MCP Server

A Model Context Protocol (MCP) server that provides comprehensive cryptocurrency analysis using the CoinCap API. This server offers real-time price data, market analysis, and historical trends through an easy-to-use interface.

Featured
TypeScript
MCP PubMed Search

MCP PubMed Search

Server to search PubMed (PubMed is a free, online database that allows users to search for biomedical and life sciences literature). I have created on a day MCP came out but was on vacation, I saw someone post similar server in your DB, but figured to post mine.

Featured
Python
dbt Semantic Layer MCP Server

dbt Semantic Layer MCP Server

A server that enables querying the dbt Semantic Layer through natural language conversations with Claude Desktop and other AI assistants, allowing users to discover metrics, create queries, analyze data, and visualize results.

Featured
TypeScript
mixpanel

mixpanel

Connect to your Mixpanel data. Query events, retention, and funnel data from Mixpanel analytics.

Featured
TypeScript
Sequential Thinking MCP Server

Sequential Thinking MCP Server

This server facilitates structured problem-solving by breaking down complex issues into sequential steps, supporting revisions, and enabling multiple solution paths through full MCP integration.

Featured
Python
Nefino MCP Server

Nefino MCP Server

Provides large language models with access to news and information about renewable energy projects in Germany, allowing filtering by location, topic (solar, wind, hydrogen), and date range.

Official
Python
Vectorize

Vectorize

Vectorize MCP server for advanced retrieval, Private Deep Research, Anything-to-Markdown file extraction and text chunking.

Official
JavaScript
Mathematica Documentation MCP server

Mathematica Documentation MCP server

A server that provides access to Mathematica documentation through FastMCP, enabling users to retrieve function documentation and list package symbols from Wolfram Mathematica.

Local
Python
kb-mcp-server

kb-mcp-server

An MCP server aimed to be portable, local, easy and convenient to support semantic/graph based retrieval of txtai "all in one" embeddings database. Any txtai embeddings db in tar.gz form can be loaded

Local
Python
Research MCP Server

Research MCP Server

The server functions as an MCP server to interact with Notion for retrieving and creating survey data, integrating with the Claude Desktop Client for conducting and reviewing surveys.

Local
Python