Stock Valuation MCP Server

Stock Valuation MCP Server

Provides professional-grade financial analysis tools for Thai stock markets, including PE Band Analysis, DDM, DCF valuation models, real-time SET Watch API data, complete financial statements, and historical ratio analysis with investment recommendations.

Category
Visit Server

README

šŸ“Š Stock Valuation MCP Server

<div align="center"> <strong>A comprehensive Model Context Protocol (MCP) server for professional stock valuation and financial analysis</strong> </div>

MCP Node.js TypeScript License Docker Oracle Cloud


šŸ“– Table of Contents


šŸ“ About

The Stock Valuation MCP Server provides professional-grade financial analysis tools for stock valuation and investment decision-making. It integrates seamlessly with Claude Desktop and provides real-time data from Thai stock markets through the SET Watch API.

Key Capabilities

  • Valuation Models: PE Band Analysis, Dividend Discount Model (DDM), Discounted Cash Flow (DCF)
  • Real-time Data: Live stock data from SET Watch API
  • Financial Statements: Complete income statement, balance sheet, and cash flow analysis
  • Historical Analysis: Track and analyze financial ratios over time
  • Investment Recommendations: Data-driven buy/sell/hold suggestions
  • Secure Configuration: Environment-based configuration for API keys and secrets

✨ Features

šŸ“ˆ Valuation Tools

  • PE Band Analysis - Historical PE ratio analysis with fair value ranges
  • Dividend Discount Model (DDM) - Gordon Growth Model for dividend-paying stocks
  • Discounted Cash Flow (DCF) - Intrinsic value calculation using free cash flow projections

šŸ” Real-Time Data Integration

  • SET Watch API Integration - Fetch real-time Thai stock data
  • Financial Statements - Complete financial statement analysis
  • Historical Ratios - Track PE, PBV, ROE, ROA, ROIC trends over time
  • Automatic Calculations - Compute key financial ratios automatically

šŸ“Š Analysis Features

  • Trend Analysis - Identify valuation and profitability trends
  • Comparative Analysis - Compare against historical averages
  • Investment Scoring - Generate buy/sell/hold recommendations
  • Risk Metrics - Altman Z-Score, Piotroski F-Score calculations

šŸ›”ļø Security & Configuration

  • Environment Variables - Secure API key and configuration management
  • Oracle Cloud Ready - Optimized for Oracle Cloud Free Tier deployment
  • Docker Support - Containerized deployment with environment injection
  • Type Safety - Full TypeScript implementation with comprehensive type definitions

šŸ› ļø Supported Tools

Tool Category Tool Name Description
Valuation calculate_pe_band Calculate PE band valuation with historical data
Valuation calculate_ddm Dividend Discount Model analysis
Valuation calculate_dcf Discounted Cash Flow valuation
Data Fetching fetch_stock_data Fetch real-time stock data from SET Watch
Data Fetching complete_valuation Run all valuation models with fetched data
Financial Statements fetch_income_statement Fetch income statement data
Financial Statements fetch_balance_sheet Fetch balance sheet data
Financial Statements fetch_cash_flow_statement Fetch cash flow statement data
Financial Statements fetch_all_financial_statements Fetch all statements with ratio analysis
Historical Analysis fetch_historical_ratios Fetch historical PE, PBV, ROE, ROA, ROIC data
Historical Analysis analyze_historical_ratios Analyze trends with investment recommendations

šŸš€ Quick Start

Prerequisites

  • Node.js 18+ installed
  • Claude Desktop (for MCP integration)
  • Docker (optional, for containerized deployment)

Installation

# Clone the repository
git clone <repository-url>
cd myMCPserver

# Install dependencies
npm install

# Copy environment configuration
cp .env.example .env

# Build the project
npm run build

Claude Desktop Integration

Add to your claude_desktop_config.json:

{
  "mcpServers": {
    "stock-valuation": {
      "command": "node",
      "args": ["C:/Programing/ByAI/myMCPserver/dist/index.js"]
    }
  }
}

Restart Claude Desktop to start using the tools!

Quick Test with MCP Inspector

npm install -g @modelcontextprotocol/inspector
npx @modelcontextprotocol/inspector node dist/index.js

ā˜ļø Oracle Cloud Deployment

One-Click Deployment

# Deploy to Oracle Cloud Free Tier
chmod +x scripts/deploy-oracle.sh
./scripts/deploy-oracle.sh

Manual Deployment Steps

  1. Setup Oracle Cloud Account

    • Create free tier account
    • Setup compartment and VCN
    • Generate SSH keys
  2. Deploy Instance

    # Using OCI CLI
    oci compute instance launch \
      --availability-domain <your-AD> \
      --compartment-id <compartment-id> \
      --shape VM.Standard.A1.Flex \
      --shape-config '{"memoryInGBs": "6", "ocpus": "2"}' \
      --display-name stock-valuation-mcp \
      --assign-public-ip true
    
  3. Configure Environment

    # SSH into instance
    ssh -i ~/.ssh/oracle_key opc@<instance-ip>
    
    # Setup Docker
    sudo yum install -y docker
    sudo systemctl start docker
    sudo usermod -aG docker opc
    
    # Deploy MCP Server
    docker run -d \
      --name stock-valuation-mcp \
      --restart unless-stopped \
      -p 2901:2901 \
      -e NODE_ENV=production \
      -e SET_WATCH_API_HOST=https://your-api.com \
      stock-valuation-mcp:latest
    

For detailed deployment instructions, see Oracle Cloud Deployment Guide.


šŸ”— n8n Integration

Setting up n8n

  1. Deploy n8n

    docker-compose up -d
    
  2. Create HTTP Request Node

    {
      "method": "POST",
      "url": "http://YOUR-MCP-SERVER:2901/mcp",
      "body": {
        "jsonrpc": "2.0",
        "id": 1,
        "method": "tools/call",
        "params": {
          "name": "fetch_stock_data",
          "arguments": {
            "symbol": "ADVANC"
          }
        }
      }
    }
    

Example Workflows

  • Daily Analysis Report: Automatically analyze portfolio stocks every morning
  • Price Alerts: Get notified when stocks hit target prices
  • Batch Valuation: Value multiple stocks in parallel

For complete n8n integration guide, see n8n Integration Documentation.


šŸ“š Documentation

Document Description
Oracle Cloud Deployment Complete guide for deploying to Oracle Cloud Free Tier
n8n Integration Integrate with n8n for automated workflows
n8n API Examples Ready-to-use n8n workflow examples
Troubleshooting Common issues and solutions

āš™ļø Installation

Development Mode

# Install dependencies
npm install

# Set up environment
cp .env.example .env

# Build TypeScript
npm run build

# Run in development
npm run dev

Production Mode

# Build for production
npm run clean
npm run build

# Run production server
npm start

Docker Deployment

# Build image
docker build -t stock-valuation-mcp .

# Run with Docker
docker run -d \
  -p 2901:2901 \
  -e NODE_ENV=production \
  stock-valuation-mcp

# Or use Docker Compose
docker-compose up -d

šŸ”§ Configuration

Environment Variables

Create a .env file based on .env.example:

# API Configuration
SET_WATCH_API_HOST=https://xxxxxxxxxxxx.app  # Your API host
SET_WATCH_API_TIMEOUT=30000

# Server Configuration
NODE_ENV=production
LOG_LEVEL=info

# Optional: Custom API Authentication
# API_AUTH_HEADER=X-API-Key
# API_AUTH_VALUE=your-api-key

Available Variables

Variable Description Default
SET_WATCH_API_HOST SET Watch API base URL https://xxxx-api.vercel.app
SET_WATCH_API_TIMEOUT API request timeout (ms) 30000
NODE_ENV Environment mode development
LOG_LEVEL Logging level info
API_AUTH_HEADER Custom auth header (none)
API_AUTH_VALUE Auth header value (none)

šŸ“š API Documentation

Tool Examples

1. Complete Stock Analysis

{
  "tool": "complete_valuation",
  "arguments": {
    "symbol": "ADVANC",
    "requiredReturn": 0.10,
    "growthRate": 0.05,
    "discountRate": 0.10
  }
}

2. Financial Statement Analysis

{
  "tool": "fetch_all_financial_statements",
  "arguments": {
    "symbol": "SCB",
    "period": "Quarterly"
  }
}

3. Historical Trend Analysis

{
  "tool": "analyze_historical_ratios",
  "arguments": {
    "symbol": "PTT",
    "period": "Quarterly"
  }
}

Response Format

All tools return structured JSON responses including:

{
  "symbol": "ADVANC.BK",
  "timestamp": "2024-01-20T10:30:00Z",
  "data": { ... },
  "analysis": { ... },
  "recommendation": "Buy"
}

šŸ’” Usage Examples

Example 1: Thai Stock Valuation

{
  "tool": "fetch_stock_data",
  "arguments": {
    "symbol": "AOT"
  }
}

Response: Current stock data with PE, PBV, EPS, dividend yield, ROE, etc.

Example 2: PE Band Analysis with Custom Data

{
  "tool": "calculate_pe_band",
  "arguments": {
    "symbol": "AAPL",
    "currentPrice": 150.00,
    "eps": 5.00,
    "historicalPEs": [15, 18, 20, 22, 25, 23]
  }
}

Response: PE band analysis with fair value range and recommendation.

Example 3: DCF Valuation

{
  "tool": "calculate_dcf",
  "arguments": {
    "symbol": "GOOGL",
    "currentPrice": 150,
    "freeCashFlow": 60000000000,
    "sharesOutstanding": 15000000000,
    "growthRate": 0.08,
    "discountRate": 0.10,
    "years": 5
  }
}

Response: DCF analysis with 5-year projections and intrinsic value calculation.

Example 4: Historical Ratio Analysis

{
  "tool": "analyze_historical_ratios",
  "arguments": {
    "symbol": "KBANK",
    "period": "Quarterly"
  }
}

Response: Complete historical analysis with trends and investment recommendation.


šŸš€ Deployment

Oracle Cloud Free Tier

  1. Update Deployment Script:

    # Edit scripts/deploy-oracle.sh
    # Update your Oracle Cloud credentials
    
  2. Deploy:

    chmod +x scripts/deploy-oracle.sh
    ./scripts/deploy-oracle.sh
    
  3. Configure Environment:

    # On the instance
    docker pull <your-image>
    docker run -d \
      -p 2901:2901 \
      -e NODE_ENV=production \
      -e SET_WATCH_API_HOST=https://your-api.com \
      <your-image>
    

Docker Compose

services:
  stock-valuation:
    build: .
    restart: unless-stopped
    environment:
      - NODE_ENV=production
      - SET_WATCH_API_HOST=https://your-api.com
    ports:
      - "2901:2901"
    volumes:
      - ./logs:/app/logs

Environment-Specific Configuration

Development (.env.development):

NODE_ENV=development
LOG_LEVEL=debug
SET_WATCH_API_TIMEOUT=60000

Production (.env.production):

NODE_ENV=production
LOG_LEVEL=warn
SET_WATCH_API_TIMEOUT=10000

šŸ—ļø Architecture

Project Structure

myMCPserver/
ā”œā”€ā”€ src/
│   ā”œā”€ā”€ index.ts                    # Main MCP server entry point
│   ā”œā”€ā”€ config/                     # Configuration management
│   │   └── index.ts               # Environment variable configuration
│   ā”œā”€ā”€ types/                      # TypeScript type definitions
│   │   └── index.ts               # All type definitions
│   └── tools/                      # MCP tool implementations
│       ā”œā”€ā”€ stockValuation.ts      # Core valuation models
│       ā”œā”€ā”€ setWatchApi.ts         # SET Watch API integration
│       ā”œā”€ā”€ financialStatements.ts # Financial statement tools
│       └── historicalRatios.ts     # Historical analysis tools
ā”œā”€ā”€ scripts/                         # Deployment scripts
ā”œā”€ā”€ dist/                           # Compiled TypeScript output
ā”œā”€ā”€ docs/                          # Additional documentation
ā”œā”€ā”€ tests/                         # Test files (when added)
ā”œā”€ā”€ docker-compose.yml              # Docker configuration
ā”œā”€ā”€ Dockerfile                      # Docker image definition
ā”œā”€ā”€ .env.example                    # Environment variable template
└── README.md                      # This file

MCP Server Architecture

ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”
│           Claude Desktop              │
│                │                    │
│         MCP Protocol                 │
│                │                    │
ā”œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”¤
│         Stock Valuation Server       │
│  ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”   │
│  │       Tool Registry          │   │
│  │  ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā” │   │
│  │  │   Valuation Tools       │ │   │
│  │  │  Data Fetching Tools   │ │   │
│  │  │  Analysis Tools        │ │   │
│  │  ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜ │   │
│  │          ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā” │   │
│  │          │ Configuration   │ │   │
│  │          ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜ │   │
│  ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜   │
│                │                    │
│          ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”      │
│          │  SET Watch API     ā”‚ā—„ā”€ā”€ā”€ā”€ā”˜
│          ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜      │
ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜

šŸ¤ Contributing

We welcome contributions! Please follow these steps:

Development Workflow

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Make your changes
  4. Add tests if applicable
  5. Ensure all tests pass (npm test)
  6. Commit your changes (git commit -m 'Add amazing feature')
  7. Push to the branch (git push origin feature/amazing-feature)
  8. Create a Pull Request

Code Standards

  • Use TypeScript for all new code
  • Follow ESLint rules (npm run lint)
  • Add JSDoc comments for functions
  • Write tests for new features
  • Update documentation

Testing

# Run unit tests
npm test

# Run with coverage
npm run test:coverage

# Run in watch mode
npm run test:watch

šŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.


šŸ™ā€ā™‚ļø Acknowledgments

  • Model Context Protocol - For the MCP SDK
  • SET Watch - For providing the Thai stock market data API
  • Oracle Cloud - For the generous free tier hosting option
  • n8n - For workflow automation capabilities

šŸ“ž Support

  • šŸ“§ Create an issue for bug reports or feature requests
  • šŸ“– Check Issues for known problems
  • šŸ“š See Documentation for detailed guides

<div align="center"> <strong>Built with ā¤ļø for the investment community</strong> </div>

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured