Stock Valuation MCP Server
Provides professional-grade financial analysis tools for Thai stock markets, including PE Band Analysis, DDM, DCF valuation models, real-time SET Watch API data, complete financial statements, and historical ratio analysis with investment recommendations.
README
š Stock Valuation MCP Server
<div align="center"> <strong>A comprehensive Model Context Protocol (MCP) server for professional stock valuation and financial analysis</strong> </div>
š Table of Contents
- About
- Features
- Supported Tools
- Quick Start
- Oracle Cloud Deployment
- n8n Integration
- Documentation
- Installation
- Configuration
- API Documentation
- Usage Examples
- Deployment
- Architecture
- Contributing
- License
š About
The Stock Valuation MCP Server provides professional-grade financial analysis tools for stock valuation and investment decision-making. It integrates seamlessly with Claude Desktop and provides real-time data from Thai stock markets through the SET Watch API.
Key Capabilities
- Valuation Models: PE Band Analysis, Dividend Discount Model (DDM), Discounted Cash Flow (DCF)
- Real-time Data: Live stock data from SET Watch API
- Financial Statements: Complete income statement, balance sheet, and cash flow analysis
- Historical Analysis: Track and analyze financial ratios over time
- Investment Recommendations: Data-driven buy/sell/hold suggestions
- Secure Configuration: Environment-based configuration for API keys and secrets
⨠Features
š Valuation Tools
- PE Band Analysis - Historical PE ratio analysis with fair value ranges
- Dividend Discount Model (DDM) - Gordon Growth Model for dividend-paying stocks
- Discounted Cash Flow (DCF) - Intrinsic value calculation using free cash flow projections
š Real-Time Data Integration
- SET Watch API Integration - Fetch real-time Thai stock data
- Financial Statements - Complete financial statement analysis
- Historical Ratios - Track PE, PBV, ROE, ROA, ROIC trends over time
- Automatic Calculations - Compute key financial ratios automatically
š Analysis Features
- Trend Analysis - Identify valuation and profitability trends
- Comparative Analysis - Compare against historical averages
- Investment Scoring - Generate buy/sell/hold recommendations
- Risk Metrics - Altman Z-Score, Piotroski F-Score calculations
š”ļø Security & Configuration
- Environment Variables - Secure API key and configuration management
- Oracle Cloud Ready - Optimized for Oracle Cloud Free Tier deployment
- Docker Support - Containerized deployment with environment injection
- Type Safety - Full TypeScript implementation with comprehensive type definitions
š ļø Supported Tools
| Tool Category | Tool Name | Description |
|---|---|---|
| Valuation | calculate_pe_band |
Calculate PE band valuation with historical data |
| Valuation | calculate_ddm |
Dividend Discount Model analysis |
| Valuation | calculate_dcf |
Discounted Cash Flow valuation |
| Data Fetching | fetch_stock_data |
Fetch real-time stock data from SET Watch |
| Data Fetching | complete_valuation |
Run all valuation models with fetched data |
| Financial Statements | fetch_income_statement |
Fetch income statement data |
| Financial Statements | fetch_balance_sheet |
Fetch balance sheet data |
| Financial Statements | fetch_cash_flow_statement |
Fetch cash flow statement data |
| Financial Statements | fetch_all_financial_statements |
Fetch all statements with ratio analysis |
| Historical Analysis | fetch_historical_ratios |
Fetch historical PE, PBV, ROE, ROA, ROIC data |
| Historical Analysis | analyze_historical_ratios |
Analyze trends with investment recommendations |
š Quick Start
Prerequisites
- Node.js 18+ installed
- Claude Desktop (for MCP integration)
- Docker (optional, for containerized deployment)
Installation
# Clone the repository
git clone <repository-url>
cd myMCPserver
# Install dependencies
npm install
# Copy environment configuration
cp .env.example .env
# Build the project
npm run build
Claude Desktop Integration
Add to your claude_desktop_config.json:
{
"mcpServers": {
"stock-valuation": {
"command": "node",
"args": ["C:/Programing/ByAI/myMCPserver/dist/index.js"]
}
}
}
Restart Claude Desktop to start using the tools!
Quick Test with MCP Inspector
npm install -g @modelcontextprotocol/inspector
npx @modelcontextprotocol/inspector node dist/index.js
āļø Oracle Cloud Deployment
One-Click Deployment
# Deploy to Oracle Cloud Free Tier
chmod +x scripts/deploy-oracle.sh
./scripts/deploy-oracle.sh
Manual Deployment Steps
-
Setup Oracle Cloud Account
- Create free tier account
- Setup compartment and VCN
- Generate SSH keys
-
Deploy Instance
# Using OCI CLI oci compute instance launch \ --availability-domain <your-AD> \ --compartment-id <compartment-id> \ --shape VM.Standard.A1.Flex \ --shape-config '{"memoryInGBs": "6", "ocpus": "2"}' \ --display-name stock-valuation-mcp \ --assign-public-ip true -
Configure Environment
# SSH into instance ssh -i ~/.ssh/oracle_key opc@<instance-ip> # Setup Docker sudo yum install -y docker sudo systemctl start docker sudo usermod -aG docker opc # Deploy MCP Server docker run -d \ --name stock-valuation-mcp \ --restart unless-stopped \ -p 2901:2901 \ -e NODE_ENV=production \ -e SET_WATCH_API_HOST=https://your-api.com \ stock-valuation-mcp:latest
For detailed deployment instructions, see Oracle Cloud Deployment Guide.
š n8n Integration
Setting up n8n
-
Deploy n8n
docker-compose up -d -
Create HTTP Request Node
{ "method": "POST", "url": "http://YOUR-MCP-SERVER:2901/mcp", "body": { "jsonrpc": "2.0", "id": 1, "method": "tools/call", "params": { "name": "fetch_stock_data", "arguments": { "symbol": "ADVANC" } } } }
Example Workflows
- Daily Analysis Report: Automatically analyze portfolio stocks every morning
- Price Alerts: Get notified when stocks hit target prices
- Batch Valuation: Value multiple stocks in parallel
For complete n8n integration guide, see n8n Integration Documentation.
š Documentation
| Document | Description |
|---|---|
| Oracle Cloud Deployment | Complete guide for deploying to Oracle Cloud Free Tier |
| n8n Integration | Integrate with n8n for automated workflows |
| n8n API Examples | Ready-to-use n8n workflow examples |
| Troubleshooting | Common issues and solutions |
āļø Installation
Development Mode
# Install dependencies
npm install
# Set up environment
cp .env.example .env
# Build TypeScript
npm run build
# Run in development
npm run dev
Production Mode
# Build for production
npm run clean
npm run build
# Run production server
npm start
Docker Deployment
# Build image
docker build -t stock-valuation-mcp .
# Run with Docker
docker run -d \
-p 2901:2901 \
-e NODE_ENV=production \
stock-valuation-mcp
# Or use Docker Compose
docker-compose up -d
š§ Configuration
Environment Variables
Create a .env file based on .env.example:
# API Configuration
SET_WATCH_API_HOST=https://xxxxxxxxxxxx.app # Your API host
SET_WATCH_API_TIMEOUT=30000
# Server Configuration
NODE_ENV=production
LOG_LEVEL=info
# Optional: Custom API Authentication
# API_AUTH_HEADER=X-API-Key
# API_AUTH_VALUE=your-api-key
Available Variables
| Variable | Description | Default |
|---|---|---|
SET_WATCH_API_HOST |
SET Watch API base URL | https://xxxx-api.vercel.app |
SET_WATCH_API_TIMEOUT |
API request timeout (ms) | 30000 |
NODE_ENV |
Environment mode | development |
LOG_LEVEL |
Logging level | info |
API_AUTH_HEADER |
Custom auth header | (none) |
API_AUTH_VALUE |
Auth header value | (none) |
š API Documentation
Tool Examples
1. Complete Stock Analysis
{
"tool": "complete_valuation",
"arguments": {
"symbol": "ADVANC",
"requiredReturn": 0.10,
"growthRate": 0.05,
"discountRate": 0.10
}
}
2. Financial Statement Analysis
{
"tool": "fetch_all_financial_statements",
"arguments": {
"symbol": "SCB",
"period": "Quarterly"
}
}
3. Historical Trend Analysis
{
"tool": "analyze_historical_ratios",
"arguments": {
"symbol": "PTT",
"period": "Quarterly"
}
}
Response Format
All tools return structured JSON responses including:
{
"symbol": "ADVANC.BK",
"timestamp": "2024-01-20T10:30:00Z",
"data": { ... },
"analysis": { ... },
"recommendation": "Buy"
}
š” Usage Examples
Example 1: Thai Stock Valuation
{
"tool": "fetch_stock_data",
"arguments": {
"symbol": "AOT"
}
}
Response: Current stock data with PE, PBV, EPS, dividend yield, ROE, etc.
Example 2: PE Band Analysis with Custom Data
{
"tool": "calculate_pe_band",
"arguments": {
"symbol": "AAPL",
"currentPrice": 150.00,
"eps": 5.00,
"historicalPEs": [15, 18, 20, 22, 25, 23]
}
}
Response: PE band analysis with fair value range and recommendation.
Example 3: DCF Valuation
{
"tool": "calculate_dcf",
"arguments": {
"symbol": "GOOGL",
"currentPrice": 150,
"freeCashFlow": 60000000000,
"sharesOutstanding": 15000000000,
"growthRate": 0.08,
"discountRate": 0.10,
"years": 5
}
}
Response: DCF analysis with 5-year projections and intrinsic value calculation.
Example 4: Historical Ratio Analysis
{
"tool": "analyze_historical_ratios",
"arguments": {
"symbol": "KBANK",
"period": "Quarterly"
}
}
Response: Complete historical analysis with trends and investment recommendation.
š Deployment
Oracle Cloud Free Tier
-
Update Deployment Script:
# Edit scripts/deploy-oracle.sh # Update your Oracle Cloud credentials -
Deploy:
chmod +x scripts/deploy-oracle.sh ./scripts/deploy-oracle.sh -
Configure Environment:
# On the instance docker pull <your-image> docker run -d \ -p 2901:2901 \ -e NODE_ENV=production \ -e SET_WATCH_API_HOST=https://your-api.com \ <your-image>
Docker Compose
services:
stock-valuation:
build: .
restart: unless-stopped
environment:
- NODE_ENV=production
- SET_WATCH_API_HOST=https://your-api.com
ports:
- "2901:2901"
volumes:
- ./logs:/app/logs
Environment-Specific Configuration
Development (.env.development):
NODE_ENV=development
LOG_LEVEL=debug
SET_WATCH_API_TIMEOUT=60000
Production (.env.production):
NODE_ENV=production
LOG_LEVEL=warn
SET_WATCH_API_TIMEOUT=10000
šļø Architecture
Project Structure
myMCPserver/
āāā src/
ā āāā index.ts # Main MCP server entry point
ā āāā config/ # Configuration management
ā ā āāā index.ts # Environment variable configuration
ā āāā types/ # TypeScript type definitions
ā ā āāā index.ts # All type definitions
ā āāā tools/ # MCP tool implementations
ā āāā stockValuation.ts # Core valuation models
ā āāā setWatchApi.ts # SET Watch API integration
ā āāā financialStatements.ts # Financial statement tools
ā āāā historicalRatios.ts # Historical analysis tools
āāā scripts/ # Deployment scripts
āāā dist/ # Compiled TypeScript output
āāā docs/ # Additional documentation
āāā tests/ # Test files (when added)
āāā docker-compose.yml # Docker configuration
āāā Dockerfile # Docker image definition
āāā .env.example # Environment variable template
āāā README.md # This file
MCP Server Architecture
āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā
ā Claude Desktop ā
ā ā ā
ā MCP Protocol ā
ā ā ā
āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā¤
ā Stock Valuation Server ā
ā āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā ā
ā ā Tool Registry ā ā
ā ā āāāāāāāāāāāāāāāāāāāāāāāāāāā ā ā
ā ā ā Valuation Tools ā ā ā
ā ā ā Data Fetching Tools ā ā ā
ā ā ā Analysis Tools ā ā ā
ā ā āāāāāāāāāāāāāāāāāāāāāāāāāāā ā ā
ā ā āāāāāāāāāāāāāāāāāāā ā ā
ā ā ā Configuration ā ā ā
ā ā āāāāāāāāāāāāāāāāāāā ā ā
ā āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā ā
ā ā ā
ā āāāāāāāāāāāāāāāāāāā ā
ā ā SET Watch API āāāāāāā
ā āāāāāāāāāāāāāāāāāāā ā
āāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāāā
š¤ Contributing
We welcome contributions! Please follow these steps:
Development Workflow
- Fork the repository
- Create a feature branch (
git checkout -b feature/amazing-feature) - Make your changes
- Add tests if applicable
- Ensure all tests pass (
npm test) - Commit your changes (
git commit -m 'Add amazing feature') - Push to the branch (
git push origin feature/amazing-feature) - Create a Pull Request
Code Standards
- Use TypeScript for all new code
- Follow ESLint rules (
npm run lint) - Add JSDoc comments for functions
- Write tests for new features
- Update documentation
Testing
# Run unit tests
npm test
# Run with coverage
npm run test:coverage
# Run in watch mode
npm run test:watch
š License
This project is licensed under the MIT License - see the LICENSE file for details.
šāāļø Acknowledgments
- Model Context Protocol - For the MCP SDK
- SET Watch - For providing the Thai stock market data API
- Oracle Cloud - For the generous free tier hosting option
- n8n - For workflow automation capabilities
š Support
- š§ Create an issue for bug reports or feature requests
- š Check Issues for known problems
- š See Documentation for detailed guides
<div align="center"> <strong>Built with ā¤ļø for the investment community</strong> </div>
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.