SQLite MCP Server
Enables LLM agents to perform complete database operations on SQLite databases, including creating tables, executing queries, and managing data through CRUD operations with schema inspection capabilities.
README
SQLite MCP Server
A Model Context Protocol (MCP) server for SQLite database operations, built with FastMCP. This server allows LLM agents to read, create, update, and delete data in SQLite databases.
Features
- Database Management: Open/close SQLite databases
- CRUD Operations: Create tables, insert, read, update, and delete records
- Query Execution: Execute raw SQL SELECT queries
- Schema Inspection: List tables and view table schemas
- Type-Safe: Full type hints and error handling
Installation
Prerequisites
- Python 3.8 or higher
- pip
Setup
- Clone or navigate to the project directory:
cd sqlite-mcp
- Create a virtual environment (recommended):
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
- Install dependencies:
pip install -r requirements.txt
Quick Start
Running the Server
# Using the npm script
npm start
# Or directly with Python
python -m sqlite_mcp.server
# Or with uvicorn (if using HTTP transport)
uvicorn sqlite_mcp.server:mcp --reload
Available Tools
1. open_database
Opens or creates a SQLite database file.
Parameters:
path(string): Path to the SQLite database file
Example:
{
"path": "/path/to/my_database.db"
}
2. close_database
Closes the current database connection.
Example:
{}
3. execute_query
Execute a SELECT query and return results.
Parameters:
query(string): SQL SELECT queryparameters(array, optional): Query parameters for prepared statements
Example:
{
"query": "SELECT * FROM users WHERE age > ?",
"parameters": [18]
}
4. create_table
Create a new table in the database.
Parameters:
table(string): Table nameschema(string): Column definitions
Example:
{
"table": "users",
"schema": "id INTEGER PRIMARY KEY, name TEXT NOT NULL, email TEXT UNIQUE, age INTEGER"
}
5. insert
Insert a row into a table.
Parameters:
table(string): Table namedata(object): Column names and values
Example:
{
"table": "users",
"data": {
"name": "John Doe",
"email": "john@example.com",
"age": 30
}
}
6. update
Update rows in a table.
Parameters:
table(string): Table namedata(object): Column names and new valueswhere(string): WHERE clause conditionwhere_params(array, optional): Parameters for WHERE clause
Example:
{
"table": "users",
"data": {
"age": 31
},
"where": "id = ?",
"where_params": [1]
}
7. delete
Delete rows from a table.
Parameters:
table(string): Table namewhere(string): WHERE clause conditionwhere_params(array, optional): Parameters for WHERE clause
Example:
{
"table": "users",
"where": "id = ?",
"where_params": [1]
}
8. list_tables
List all tables in the database.
Example:
{}
Returns:
{
"tables": ["users", "products", "orders"]
}
9. get_table_schema
Get the schema of a table (columns, types, constraints).
Parameters:
table(string): Table name
Example:
{
"table": "users"
}
Returns:
{
"columns": [
{
"cid": 0,
"name": "id",
"type": "INTEGER",
"notnull": 0,
"dflt_value": null,
"pk": 1
},
{
"cid": 1,
"name": "name",
"type": "TEXT",
"notnull": 1,
"dflt_value": null,
"pk": 0
}
]
}
Usage Examples
Example 1: Create a Database and Table
# Open database
call open_database with path="/tmp/myapp.db"
# Create a users table
call create_table with table="users" schema="id INTEGER PRIMARY KEY, name TEXT NOT NULL, email TEXT UNIQUE, age INTEGER"
# List tables
call list_tables with no parameters
Example 2: Insert and Query Data
# Insert a user
call insert with table="users" data={"name": "Alice Johnson", "email": "alice@example.com", "age": 28}
# Query users
call execute_query with query="SELECT * FROM users WHERE age >= ?" parameters=[25]
Example 3: Update Records
# Update user's age
call update with table="users" data={"age": 29} where="name = ?" where_params=["Alice Johnson"]
# Verify update
call execute_query with query="SELECT * FROM users WHERE name = ?" parameters=["Alice Johnson"]
Example 4: Delete Records
# Delete a user
call delete with table="users" where="id = ?" where_params=[1]
# List remaining users
call execute_query with query="SELECT * FROM users"
Integration with LLM Agents
This MCP server is designed to be used with LLM agents. When configured properly, the agent can:
- Create databases and tables
- Insert, update, and delete records
- Query data
- Inspect database schemas
Example Agent Prompt
You have access to a SQLite database through MCP tools.
Create a simple task management database with the following requirements:
1. Create a "tasks" table with columns: id (PRIMARY KEY), title, description, status, and created_at
2. Insert 3 sample tasks
3. Query all tasks with status='pending'
4. Update the first task's status to 'completed'
Error Handling
All tools include comprehensive error handling. Common errors:
- "No database is open": Call
open_databasefirst - "Table creation failed": Check SQL syntax in schema parameter
- "Query execution failed": Verify SQL query syntax and parameters
- "Insert/Update/Delete failed": Check table name, column names, and data types
Project Structure
sqlite-mcp/
├── sqlite_mcp/
│ ├── __init__.py # Package initialization
│ ├── server.py # FastMCP server with tool definitions
│ └── db.py # SQLite database operations
├── requirements.txt # Python dependencies
├── package.json # Project metadata
└── README.md # This file
Configuration
To use this server with Claude or other MCP clients, add it to your configuration file:
For Claude Desktop
Edit ~/.config/Claude/claude_desktop_config.json:
{
"mcpServers": {
"sqlite-mcp": {
"command": "python",
"args": ["-m", "sqlite_mcp.server"],
"cwd": "/path/to/sqlite-mcp"
}
}
}
Performance Notes
- SQLite is suitable for single-user and small-team applications
- For concurrent access, consider using connection pooling
- Large queries may benefit from appropriate indexing
- Use transactions for data consistency (can be added if needed)
Security Considerations
⚠️ Important: This server executes SQL queries directly. When using with untrusted input:
- Always use parameterized queries (the
parametersfields in tools) - Validate input data before sending to the server
- Restrict database file permissions
- Don't expose sensitive data in database files
Troubleshooting
Server Won't Start
- Check Python version (3.8+)
- Verify all dependencies installed:
pip install -r requirements.txt - Check for port conflicts if using HTTP transport
Database File Not Found
- Ensure the directory path exists
- Check file permissions
- Use absolute paths for database files
Query Errors
- Verify table names and column names match exactly
- Use proper SQL syntax
- Check data types match column definitions
Development
To modify the server:
- Edit
sqlite_mcp/server.pyto add new tools - Edit
sqlite_mcp/db.pyto modify database operations - Restart the server to apply changes
License
MIT
Contributing
Feel free to submit issues and enhancement requests!
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.