SportIntel MCP Server

SportIntel MCP Server

Provides AI-powered sports analytics for Daily Fantasy Sports (DFS) with real-time player projections, lineup optimization, live odds aggregation from multiple sportsbooks, and SHAP-based explainability to understand recommendation reasoning.

Category
Visit Server

README

🏈 SportIntel MCP Server

AI-Powered Sports Intelligence for Claude & AI Agents

Apify Challenge 2025 MCP Server License: MIT

SportIntel MCP is the first AI-powered sports analytics MCP server, bringing explainable Daily Fantasy Sports (DFS) intelligence to Claude and other AI agents. Built on the Model Context Protocol, it provides real-time player projections, lineup optimization, live odds aggregation, and SHAP-based explainability.


✨ Features

🎯 Core Capabilities (MVP)

Tool Description Use Case
get_player_projections AI-powered DFS projections with SHAP explainability Get projected fantasy points for all players in today's slate
optimize_lineup Multi-objective lineup optimization Generate optimal cash/GPP lineups under salary cap
get_live_odds Real-time odds from 10+ sportsbooks Compare spreads, totals, and find best available lines
explain_recommendation SHAP/LIME explanations for projections Understand why the model recommends a player

πŸ”₯ Key Differentiators

  • βœ… First MCP Server for Sports Analytics - Zero competition in MCP ecosystem
  • 🧠 Explainable AI - SHAP values show feature importance (not a black box)
  • πŸ’° 10x Cost Advantage - Free tier vs $50-200/month DFS subscription sites
  • πŸ“Š Multi-Source Intelligence - Aggregates odds, stats, news, injuries
  • ⚑ Real-Time - Live odds updates, instant injury impact analysis
  • πŸ€– AI-Native - Built for Claude/AI agent consumption

πŸš€ Quick Start

Installation

# Clone repository
git clone https://github.com/roizenlabs/sportintel-mcp.git
cd sportintel-mcp

# Install dependencies
npm install

# Set up environment
cp .env.example .env
# Edit .env with your API keys

Configuration for Claude Desktop

Add to your Claude Desktop config (~/Library/Application Support/Claude/claude_desktop_config.json on macOS):

{
  "mcpServers": {
    "sportintel": {
      "command": "node",
      "args": ["/path/to/sportintel-mcp/dist/main.js"],
      "env": {
        "ODDS_API_KEY": "your_api_key_here"
      }
    }
  }
}

Run Standalone

# Development mode
npm run dev

# Production build
npm run build
npm start

πŸ“– Usage Examples

Example 1: Get NBA Player Projections

Claude Prompt:

Get AI projections for tonight's NBA main slate with explainability

MCP Call:

{
  "tool": "get_player_projections",
  "arguments": {
    "sport": "NBA",
    "slate": "main",
    "includeExplanations": true
  }
}

Response:

{
  "sport": "NBA",
  "slate": "main",
  "projections": [
    {
      "playerName": "LeBron James",
      "team": "LAL",
      "position": "SF",
      "salary": 9500,
      "projectedPoints": 48.2,
      "floor": 38.6,
      "ceiling": 57.8,
      "confidence": 0.89,
      "value": 5.07,
      "explanation": {
        "topFactors": [
          {
            "factor": "recent_ppg",
            "impact": +6.2,
            "description": "Averaging 32.1 PPG over last 5 games"
          },
          {
            "factor": "vegas_total",
            "impact": +3.1,
            "description": "230.5 Vegas total (high-scoring game expected)"
          }
        ],
        "reasoning": "LeBron is projected above baseline due to elite recent performance and favorable game environment..."
      }
    }
  ]
}

Example 2: Optimize Lineup

Claude Prompt:

Build me 3 cash game lineups for NBA using the projections you just got

MCP Call:

{
  "tool": "optimize_lineup",
  "arguments": {
    "sport": "NBA",
    "salaryCap": 50000,
    "lineupCount": 3,
    "strategy": "cash",
    "projections": [/* from previous call */]
  }
}

Response:

{
  "lineups": [
    {
      "rank": 1,
      "players": [
        {"playerName": "Giannis Antetokounmpo", "salary": 11500, "projectedPoints": 54.2},
        {"playerName": "Damian Lillard", "salary": 9000, "projectedPoints": 42.1}
        // ... 6 more players
      ],
      "totalSalary": 49800,
      "projectedPoints": 283.5,
      "riskScore": 22,
      "estimatedOwnership": 18.5
    }
  ]
}

Example 3: Compare Odds Across Books

Claude Prompt:

Show me the best odds for tonight's Lakers vs Warriors game

MCP Call:

{
  "tool": "get_live_odds",
  "arguments": {
    "sport": "NBA",
    "markets": ["spreads", "totals", "h2h"]
  }
}

πŸ—οΈ Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚          Claude Desktop / AI Agent              β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                  β”‚ MCP Protocol
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚           SportIntel MCP Server                 β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚  β”‚  Tool Registry                           β”‚   β”‚
β”‚  β”‚  - Player Projections                    β”‚   β”‚
β”‚  β”‚  - Lineup Optimizer                      β”‚   β”‚
β”‚  β”‚  - Live Odds                             β”‚   β”‚
β”‚  β”‚  - Explain Recommendation                β”‚   β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                  β”‚
      β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
      β”‚                       β”‚            β”‚
β”Œβ”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”   β”Œβ”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Odds API   β”‚    β”‚ BallDontLieβ”‚   β”‚  XGBoost     β”‚
β”‚ (Betting)  β”‚    β”‚ (NBA Stats)β”‚   β”‚  + SHAP      β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜    β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Tech Stack

  • Protocol: Model Context Protocol (MCP)
  • Runtime: Node.js 18+ with TypeScript
  • ML Framework: XGBoost + SHAP (explainability)
  • Optimization: Linear Programming (GLPK.js)
  • Data Sources:

🎯 Apify Challenge Strategy

Why SportIntel MCP Wins

  1. Novel & First-to-Market βœ…

    • Zero MCP servers for sports analytics on Apify Store
    • Existing actors are simple scrapers, not intelligence layers
  2. Technical Excellence βœ…

    • Explainable AI (SHAP/LIME)
    • Multi-agent architecture
    • MCP protocol implementation
  3. Real-World Value βœ…

    • DFS market is $29.3B (2024)
    • Saves users $50-200/month vs existing subscriptions
    • Measurable ROI for users
  4. MAU Growth Strategy βœ…

    • NFL/NBA seasons = guaranteed traffic
    • Content marketing (YouTube, Reddit, Twitter)
    • Integration with OpenConductor ecosystem

Revenue Projections

Tier MAU Challenge Payout Pro Subscriptions Total
Conservative 300 $600 $150/mo $750
Moderate 700 $1,400 $375/mo $1,775
Aggressive 1,000+ $2,000+ $750/mo $4,750+

Post-Challenge: $19K-81K annual run rate from subscriptions + B2B


πŸ› οΈ Development

Project Structure

sportintel-mcp/
β”œβ”€β”€ src/
β”‚   β”œβ”€β”€ main.ts                    # Entry point
β”‚   β”œβ”€β”€ mcp-server.ts              # MCP protocol handler
β”‚   β”œβ”€β”€ tools/                     # MCP tools
β”‚   β”‚   β”œβ”€β”€ player-projections.ts
β”‚   β”‚   β”œβ”€β”€ lineup-optimizer.ts
β”‚   β”‚   β”œβ”€β”€ live-odds.ts
β”‚   β”‚   └── explain-recommendation.ts
β”‚   β”œβ”€β”€ models/                    # ML models
β”‚   β”‚   β”œβ”€β”€ xgboost-trainer.ts
β”‚   β”‚   └── explainer.ts
β”‚   β”œβ”€β”€ integrations/              # Data sources
β”‚   β”‚   β”œβ”€β”€ odds-api.ts
β”‚   β”‚   └── balldontlie.ts
β”‚   └── types/                     # TypeScript types
β”œβ”€β”€ docs/                          # Documentation
β”œβ”€β”€ tests/                         # Unit & integration tests
└── apify/                         # Apify Actor config

Scripts

npm run dev          # Development with hot reload
npm run build        # Production build
npm test             # Run tests
npm run train-model  # Train ML models

Adding a New Tool

  1. Create src/tools/your-tool.ts extending BaseTool
  2. Define MCPTool schema
  3. Implement execute(args) method
  4. Register in src/tools/index.ts

Example:

export class YourTool extends BaseTool {
  definition: MCPTool = {
    name: "your_tool",
    description: "What it does",
    inputSchema: { /* Zod schema */ }
  };

  async execute(args: any) {
    // Your logic here
    return { success: true };
  }
}

πŸ“Š Performance

  • Projection Accuracy: 85% correlation with actual fantasy points (backtested)
  • Optimization Speed: <2s for 10 lineups, <10s for 150 lineups
  • API Rate Limits:
    • Odds API: 500 requests/hour
    • BallDontLie: 60 requests/minute
  • Caching: 5-minute TTL for odds, 1-hour for projections

🚧 Roadmap

Phase 1: MVP (Weeks 1-2) βœ…

  • [x] Core MCP server
  • [x] Player projections tool
  • [x] Lineup optimizer tool
  • [x] Live odds tool
  • [x] SHAP explainability

Phase 2: Growth (Weeks 3-8)

  • [ ] Injury impact analyzer
  • [ ] Prop bet optimizer
  • [ ] Stacking strategy engine
  • [ ] Historical performance database
  • [ ] Webhook integrations

Phase 3: Scale (Month 3+)

  • [ ] NFL support
  • [ ] MLB support
  • [ ] Real-time lineup adjustment
  • [ ] Browser extension
  • [ ] Mobile app

🀝 Contributing

We welcome contributions! See CONTRIBUTING.md for guidelines.

Areas We Need Help

  • [ ] NFL projection models
  • [ ] MLB/NHL data sources
  • [ ] Additional explainability methods
  • [ ] Performance optimization
  • [ ] Documentation improvements

πŸ“„ License

MIT License - see LICENSE


πŸ™ Acknowledgments

  • Apify Challenge 2025 for the opportunity
  • Anthropic for Claude and MCP protocol
  • the-odds-api.com for betting data
  • balldontlie.io for free NBA stats
  • SHAP for explainable AI framework

πŸ“ž Contact


⚑ Quick Links


Built with ❀️ by RoizenLabs | From railroad diagnostics to AI-powered DFS intelligence

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured