Spire.Doc MCP Server

Spire.Doc MCP Server

Enables AI agents to create, read, modify, and convert Word documents without Microsoft Word, supporting 18 tools for document operations, paragraph manipulation, table management, formatting, and conversion between multiple formats including PDF, HTML, and Markdown.

Category
Visit Server

README

What's Spire.Doc MCP Server ?

Spire.Doc MCP Server is a Model Context Protocol (MCP) server that enables you to manipulate Word documents without requiring Microsoft Word. With it, you can create, read, and modify Word documents directly using your AI agent.

Key Features

Quick Start

Prerequisites

  • Python 3.10 or higher

Installation

  1. Clone the repository:
git clone https://github.com/eiceblue/spire-doc-mcp-server.git
cd spire-doc-mcp-server
  1. Install using uv:
uv pip install -e .

Running the Server

Start the server (default port 8000):

uv run spire-doc-mcp-server

Custom port (e.g., 8080):

# Bash/Linux/macOS
export SPIRE_DOC_MCP_PORT=8080 && uv run spire-doc-mcp-server

# Windows PowerShell
$env:SPIRE_DOC_MCP_PORT = "8080"; uv run spire-doc-mcp-server

Integration with AI Tools

Cursor IDE

  1. Add this configuration to Cursor:
{
  "mcpServers": {
    "word": {
      "url": "http://localhost:8000/sse",
      "env": {
        "WORD_FILES_PATH": "/path/to/word/files"
      }
    }
  }
}
  1. The Word tools will be available through your AI assistant.

Environment Variables

Variable Description Default
WORD_FILES_PATH Directory for Word files ./word_files

Available Tools

The server provides 18 tools organized into 5 categories:

Document Operations (6 tools)

  • create_document: Create new Word documents with optional templates
  • set_document_protection: Apply password protection to documents
  • find_and_replace: Search and replace text in documents
  • merge_documents: Merge multiple documents into one
  • add_text_watermark: Add text watermarks to documents

Paragraph Operations (5 tools)

  • get_paragraph_text: Retrieve text content from paragraphs
  • delete_paragraph: Remove paragraphs from documents
  • get_paragraph_info: Get detailed paragraph information
  • add_paragraph: Add new paragraphs to documents
  • update_paragraph_text: Modify paragraph text content

Table Operations (6 tools)

  • create_table: Create new tables with specified dimensions
  • add_table_after_paragraph: Insert tables after specific paragraphs
  • add_table_to_section: Add tables to the end of sections
  • get_table_info: Get table information and structure
  • delete_table: Remove tables from documents
  • set_cell_text: Set text content in table cells

Formatting Operations (2 tools)

  • format_paragraph: Apply formatting to paragraphs (alignment, indentation, spacing)
  • get_paragraph_format: Retrieve paragraph formatting information

Conversion Operations (3 tools)

  • convert_document: Convert documents between different formats
  • get_conversion_status: Check conversion operation status
  • get_conversion_history: View conversion history

Supported Formats

Input Formats

  • DOC: Microsoft Word 97-2003 Document
  • DOCX: Microsoft Word 2007+ Document
  • DOCM: Microsoft Word 2007+ Macro-Enabled Document
  • DOT: Microsoft Word 97-2003 Template
  • DOTX: Microsoft Word 2007+ Template
  • DOTM: Microsoft Word 2007+ Macro-Enabled Template

Output Formats

  • DOC: Microsoft Word 97-2003 Document
  • DOCX: Microsoft Word 2007+ Document
  • PDF: Portable Document Format
  • RTF: Rich Text Format
  • HTML: HyperText Markup Language
  • TXT: Plain Text
  • EPUB: Electronic Publication
  • ODT: OpenDocument Text
  • XML: Extensible Markup Language
  • Markdown: Markdown Format

Development

Project Structure

spire-doc-mcp-server/
├── src/spire_doc_mcp/
│   ├── api/                 # API layer (18 tools)
│   │   ├── document_tools.py
│   │   ├── paragraph_tools.py
│   │   ├── table_tools.py
│   │   ├── format_tools.py
│   │   └── conversion_tools.py
│   ├── core/               # Core business logic
│   │   ├── document.py
│   │   ├── paragraph.py
│   │   ├── table.py
│   │   ├── format.py
│   │   ├── conversion.py
│   │   └── base.py
│   ├── utils/              # Utilities and constants
│   │   ├── exceptions.py
│   │   └── constants.py
│   ├── server.py           # MCP server implementation
│   └── __main__.py         # Entry point
├── pyproject.toml          # Project configuration
├── README.md              # This file
└── TOOLS.md               # Detailed tool documentation

Running Tests

uv run pytest

Code Quality

The project follows Python best practices:

  • Type hints throughout
  • Comprehensive error handling
  • Consistent code formatting
  • Detailed documentation
  • Modular architecture

Documentation

🤝 Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests if applicable
  5. Submit a pull request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Support

For support and questions:

  • Check the TOOLS.md documentation
  • Review the error handling section
  • Open an issue on GitHub

Version History

  • v1.0.0: Initial stable release with 18 tools
  • Complete Word document manipulation capabilities
  • Comprehensive error handling
  • Full format conversion support

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured