Smart Docs MCP Server
Enables intelligent analysis of codebases to generate comprehensive documentation, calculate documentation coverage, and identify missing documentation with severity levels. Supports TypeScript, JavaScript, and Python with AI-powered suggestions for documentation improvements.
README
Smart Docs MCP Server
A production-ready Model Context Protocol (MCP) server that intelligently analyzes codebases and generates comprehensive documentation. Built with TypeScript and tree-sitter for accurate code parsing.
Features
- Multi-Language Support: Analyze TypeScript, JavaScript, and Python codebases
- Smart Analysis: Extract functions, classes, methods, interfaces, types, and variables
- Documentation Coverage: Calculate documentation coverage metrics
- Missing Doc Detection: Identify undocumented code with severity levels (critical, medium, low)
- AI-Powered Suggestions: Generate documentation templates and improvement recommendations
- Markdown Output: Professional documentation in markdown format
Installation
npm install
npm run build
Usage
As an MCP Server
Add to your MCP client configuration (Claude Desktop):
Windows: %APPDATA%\Claude\claude_desktop_config.json
{
"mcpServers": {
"smart-docs": {
"command": "node",
"args": ["C:\\ProjectFolder\\dist\\index.js"]
}
}
}
Then restart Claude Desktop.
Available Tools
1. analyze_codebase
Analyze a codebase or file to extract code elements and calculate documentation coverage.
Input:
{
"path": "/path/to/your/codebase"
}
Output:
- Total files analyzed
- Total code elements found
- Documentation coverage percentage
- Detailed breakdown by file and element
2. generate_documentation
Generate comprehensive markdown documentation for a codebase.
Input:
{
"path": "/path/to/your/codebase",
"format": "markdown"
}
Output:
- Complete markdown documentation
- Summary statistics
- Organized by file and element type
3. detect_missing_docs
Detect code elements missing documentation with severity classification.
Input:
{
"path": "/path/to/your/codebase",
"minSeverity": "critical"
}
Severity Levels:
- Critical: Public classes, interfaces, and exported functions
- Medium: Type aliases and exported types
- Low: Private methods and internal variables
Output:
- List of missing documentation by severity
- Summary statistics by severity and type
- Detailed element information
4. suggest_improvements
Analyze existing documentation and suggest improvements.
Input:
{
"path": "/path/to/your/codebase",
"limit": 20
}
Output:
- Documentation templates for missing docs
- Suggestions for incomplete documentation
- Parameter and return value documentation hints
Project Structure
smart-docs-mcp/
├── src/
│ ├── index.ts # MCP server entry point
│ ├── types/
│ │ └── index.ts # TypeScript types and interfaces
│ ├── parsers/
│ │ ├── base-parser.ts # Abstract parser base class
│ │ ├── typescript-parser.ts # TypeScript/JavaScript parser
│ │ └── python-parser.ts # Python parser
│ ├── analyzers/
│ │ ├── codebase-analyzer.ts # Main analysis engine
│ │ └── doc-detector.ts # Missing documentation detector
│ ├── generators/
│ │ ├── markdown-generator.ts # Markdown doc generator
│ │ └── improvement-suggester.ts # Improvement suggestions
│ ├── tools/
│ │ ├── analyze-codebase.ts
│ │ ├── generate-documentation.ts
│ │ ├── detect-missing-docs.ts
│ │ └── suggest-improvements.ts
│ └── utils/
│ └── file-utils.ts # File system utilities
├── package.json
├── tsconfig.json
└── README.md
How It Works
- Parsing: Uses tree-sitter to parse source code into Abstract Syntax Trees (AST)
- Extraction: Identifies code elements (functions, classes, etc.) from the AST
- Documentation Detection: Checks for JSDoc, docstrings, and inline comments
- Analysis: Calculates coverage and detects missing documentation
- Generation: Creates markdown documentation and improvement suggestions
Severity Classification
The server uses intelligent severity classification:
- Public APIs (classes, interfaces, exported functions) → Critical
- Type definitions and complex types → Medium
- Private methods and internal variables → Low
Error Handling
All tools include comprehensive error handling:
- Invalid paths return descriptive error messages
- Unsupported file types are gracefully skipped
- Parse errors include file location and context
Development
# Install dependencies
npm install
# Build the project
npm run build
# Watch mode for development
npm run watch
# Run the server
npm start
Requirements
- Node.js >= 18.0.0
- TypeScript 5.3+
Dependencies
@modelcontextprotocol/sdk: MCP protocol implementationtree-sitter: Code parsing enginetree-sitter-typescript: TypeScript/JavaScript grammartree-sitter-python: Python grammarzod: Schema validation
Testing
A test project is included in the test-project/ directory with sample files demonstrating various documentation scenarios.
License
MIT
Contributing
Contributions are welcome! Please ensure:
- Code follows TypeScript best practices
- All new features include error handling
- Documentation is updated according
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.