SlimContext MCP Server

SlimContext MCP Server

Provides AI chat history compression tools through token-based trimming and AI-powered summarization strategies to manage conversation context within token limits.

Category
Visit Server

README

SlimContext MCP Server

A Model Context Protocol (MCP) server that wraps the SlimContext library, providing AI chat history compression tools for MCP-compatible clients.

Overview

SlimContext MCP Server exposes two powerful compression strategies as MCP tools:

  1. trim_messages - Token-based compression that removes oldest messages when exceeding token thresholds
  2. summarize_messages - AI-powered compression using OpenAI to create concise summaries

Installation

npm install -g slimcontext-mcp-server
# or
pnpm add -g slimcontext-mcp-server

Development

# Clone and setup
git clone <repository>
cd slimcontext-mcp-server
pnpm install

# Build
pnpm build

# Run in development
pnpm dev

# Type checking
pnpm typecheck

Configuration

MCP Client Setup

Add to your MCP client configuration:

{
  "mcpServers": {
    "slimcontext": {
      "command": "npx",
      "args": ["-y", "slimcontext-mcp-server"]
    }
  }
}

Environment Variables

  • OPENAI_API_KEY: OpenAI API key for summarization (optional, can be passed as tool parameter)

Tools

trim_messages

Compresses chat history using token-based trimming strategy.

Parameters:

  • messages (required): Array of chat messages
  • maxModelTokens (optional): Maximum model token context window (default: 8192)
  • thresholdPercent (optional): Percentage threshold to trigger compression 0-1 (default: 0.7)
  • minRecentMessages (optional): Minimum recent messages to preserve (default: 2)

Example:

{
  "messages": [
    { "role": "system", "content": "You are a helpful assistant." },
    { "role": "user", "content": "Hello!" },
    { "role": "assistant", "content": "Hi there! How can I help you today?" },
    { "role": "user", "content": "Tell me about AI." }
  ],
  "maxModelTokens": 4000,
  "thresholdPercent": 0.8,
  "minRecentMessages": 2
}

Response:

{
  "success": true,
  "original_message_count": 4,
  "compressed_message_count": 3,
  "messages_removed": 1,
  "compression_ratio": 0.75,
  "compressed_messages": [
    { "role": "system", "content": "You are a helpful assistant." },
    { "role": "assistant", "content": "Hi there! How can I help you today?" },
    { "role": "user", "content": "Tell me about AI." }
  ]
}

summarize_messages

Compresses chat history using AI-powered summarization strategy.

Parameters:

  • messages (required): Array of chat messages
  • maxModelTokens (optional): Maximum model token context window (default: 8192)
  • thresholdPercent (optional): Percentage threshold to trigger compression 0-1 (default: 0.7)
  • minRecentMessages (optional): Minimum recent messages to preserve (default: 4)
  • openaiApiKey (optional): OpenAI API key (can also use OPENAI_API_KEY env var)
  • openaiModel (optional): OpenAI model for summarization (default: 'gpt-4o-mini')
  • customPrompt (optional): Custom summarization prompt

Example:

{
  "messages": [
    { "role": "system", "content": "You are a helpful assistant." },
    { "role": "user", "content": "I want to build a web scraper." },
    {
      "role": "assistant",
      "content": "I can help you build a web scraper! What programming language would you prefer?"
    },
    { "role": "user", "content": "Python please." },
    {
      "role": "assistant",
      "content": "Great choice! For Python web scraping, I recommend using requests and BeautifulSoup..."
    },
    { "role": "user", "content": "Can you show me a simple example?" }
  ],
  "maxModelTokens": 4000,
  "thresholdPercent": 0.6,
  "minRecentMessages": 2,
  "openaiModel": "gpt-4o-mini"
}

Response:

{
  "success": true,
  "original_message_count": 6,
  "compressed_message_count": 4,
  "messages_removed": 2,
  "summary_generated": true,
  "compression_ratio": 0.67,
  "compressed_messages": [
    { "role": "system", "content": "You are a helpful assistant." },
    {
      "role": "system",
      "content": "The user expressed interest in building a web scraper and requested help with Python. The assistant recommended using requests and BeautifulSoup libraries for Python web scraping."
    },
    {
      "role": "assistant",
      "content": "Great choice! For Python web scraping, I recommend using requests and BeautifulSoup..."
    },
    { "role": "user", "content": "Can you show me a simple example?" }
  ]
}

Message Format

Both tools expect messages in SlimContext format:

interface SlimContextMessage {
  role: 'system' | 'user' | 'assistant' | 'tool' | 'human';
  content: string;
}

Error Handling

All tools return structured error responses:

{
  "success": false,
  "error": "Error message description",
  "error_type": "SlimContextError" | "OpenAIError" | "UnknownError"
}

Common error scenarios:

  • Missing OpenAI API key for summarization
  • Invalid message format
  • OpenAI API rate limits or errors
  • Invalid parameter values

Token Estimation

SlimContext uses a simple heuristic for token estimation: Math.ceil(content.length / 4) + 2. This provides a reasonable approximation for most use cases. For more accurate token counting, you would need to implement a custom token estimator in your client application.

Compression Strategies

Trimming Strategy

  • Preserves all system messages
  • Preserves the most recent N messages
  • Removes oldest non-system messages until under token threshold
  • Fast and deterministic
  • No external API dependencies

Summarization Strategy

  • Preserves all system messages
  • Preserves the most recent N messages
  • Summarizes middle portion of conversation using AI
  • Creates contextually rich summaries
  • Requires OpenAI API access

License

MIT

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests for new functionality
  5. Submit a pull request

Related

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured