Slice.js Documentation MCP

Slice.js Documentation MCP

Enables AI assistants to search, list, and retrieve documentation from the Slice.js official GitHub repository. It provides full-text search capabilities and can deliver individual doc pages or a complete documentation bundle for comprehensive LLM context.

Category
Visit Server

README

Slice.js Documentation MCP

An MCP (Model Context Protocol) server that provides access to Slice.js documentation from the official GitHub repository. This server allows AI assistants and tools to query, search, and retrieve documentation seamlessly.

Features

  • Dynamic Documentation Discovery: Automatically discovers and indexes all documentation files from the GitHub repo
  • Intelligent Caching: Infinite session cache to minimize API requests and improve performance
  • Full-Text Search: Search across all documentation with keyword matching
  • Content Retrieval: Fetch specific documentation pages or the complete documentation bundle
  • Lazy Initialization: Docs structure is loaded on-demand when first needed

Installation

Global Installation (Recommended)

npm install -g slicejs-mcp

Using npx (No Installation Required)

npx slicejs-mcp

Usage

The MCP server runs as a stdio-based service, perfect for integration with AI assistants and MCP-compatible tools.

Basic Usage

npx slicejs-mcp

Integration with MCP Clients

This server is designed to work with MCP-compatible clients. When launched, it exposes 4 tools:

Tools

1. list_docs

Returns a list of all available documentation sections and categories.

Parameters: None

Response: JSON array of documentation items with id, title, and path.

Example:

[
  {
    "id": "getting-started",
    "title": "Getting Started",
    "path": "markdown/getting-started.md"
  }
]

2. search_docs

Searches across all documentation using keywords or phrases.

Parameters:

  • query (string, required): Search term
  • max_results (number, optional, default: 5): Maximum number of results

Response: JSON array of search results with snippets and metadata.

3. get_doc_content

Fetches the full content of specific documentation page(s).

Parameters:

  • doc_id (string or string[], required): Documentation ID(s) to fetch
  • include_metadata (boolean, optional, default: false): Include additional metadata

Response: JSON object(s) with document content, title, and optional metadata.

4. get_llm_full_context

Fetches the complete documentation bundle (~2000 lines) for comprehensive LLM context.

Parameters: None

Response: Complete documentation text

Note: This consumes considerable tokens but provides all documentation in one request.

Examples

List all documentation

// Via MCP client
await callTool("list_docs", {});

Search for routing information

await callTool("search_docs", {
  query: "routing",
  max_results: 3
});

Get specific documentation

await callTool("get_doc_content", {
  doc_id: "getting-started/routing"
});

Get full documentation context

await callTool("get_llm_full_context", {});

Architecture

  • Source: Documentation fetched from https://github.com/VKneider/slicejs_docs
  • Caching: Infinite session cache prevents redundant API calls
  • Initialization: Lazy loading of document structure on first tool use
  • Rate Limiting: Optimized to stay within GitHub API limits (60 req/hour)

Development

Prerequisites

  • Node.js >= 18
  • npm or yarn

Setup

git clone <repo>
cd slicejs-mcp
npm install
npm run build

Running Locally

npm start
# or
node dist/index.js

Testing with MCP Inspector

npx @modelcontextprotocol/inspector node dist/index.js

Contributing

Contributions welcome! Please ensure:

  • All tools maintain backward compatibility
  • Cache behavior is preserved
  • Error handling is robust

License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured