Slice.js Documentation MCP
Enables AI assistants to search, list, and retrieve documentation from the Slice.js official GitHub repository. It provides full-text search capabilities and can deliver individual doc pages or a complete documentation bundle for comprehensive LLM context.
README
Slice.js Documentation MCP
An MCP (Model Context Protocol) server that provides access to Slice.js documentation from the official GitHub repository. This server allows AI assistants and tools to query, search, and retrieve documentation seamlessly.
Features
- Dynamic Documentation Discovery: Automatically discovers and indexes all documentation files from the GitHub repo
- Intelligent Caching: Infinite session cache to minimize API requests and improve performance
- Full-Text Search: Search across all documentation with keyword matching
- Content Retrieval: Fetch specific documentation pages or the complete documentation bundle
- Lazy Initialization: Docs structure is loaded on-demand when first needed
Installation
Global Installation (Recommended)
npm install -g slicejs-mcp
Using npx (No Installation Required)
npx slicejs-mcp
Usage
The MCP server runs as a stdio-based service, perfect for integration with AI assistants and MCP-compatible tools.
Basic Usage
npx slicejs-mcp
Integration with MCP Clients
This server is designed to work with MCP-compatible clients. When launched, it exposes 4 tools:
Tools
1. list_docs
Returns a list of all available documentation sections and categories.
Parameters: None
Response: JSON array of documentation items with id, title, and path.
Example:
[
{
"id": "getting-started",
"title": "Getting Started",
"path": "markdown/getting-started.md"
}
]
2. search_docs
Searches across all documentation using keywords or phrases.
Parameters:
query(string, required): Search termmax_results(number, optional, default: 5): Maximum number of results
Response: JSON array of search results with snippets and metadata.
3. get_doc_content
Fetches the full content of specific documentation page(s).
Parameters:
doc_id(string or string[], required): Documentation ID(s) to fetchinclude_metadata(boolean, optional, default: false): Include additional metadata
Response: JSON object(s) with document content, title, and optional metadata.
4. get_llm_full_context
Fetches the complete documentation bundle (~2000 lines) for comprehensive LLM context.
Parameters: None
Response: Complete documentation text
Note: This consumes considerable tokens but provides all documentation in one request.
Examples
List all documentation
// Via MCP client
await callTool("list_docs", {});
Search for routing information
await callTool("search_docs", {
query: "routing",
max_results: 3
});
Get specific documentation
await callTool("get_doc_content", {
doc_id: "getting-started/routing"
});
Get full documentation context
await callTool("get_llm_full_context", {});
Architecture
- Source: Documentation fetched from https://github.com/VKneider/slicejs_docs
- Caching: Infinite session cache prevents redundant API calls
- Initialization: Lazy loading of document structure on first tool use
- Rate Limiting: Optimized to stay within GitHub API limits (60 req/hour)
Development
Prerequisites
- Node.js >= 18
- npm or yarn
Setup
git clone <repo>
cd slicejs-mcp
npm install
npm run build
Running Locally
npm start
# or
node dist/index.js
Testing with MCP Inspector
npx @modelcontextprotocol/inspector node dist/index.js
Contributing
Contributions welcome! Please ensure:
- All tools maintain backward compatibility
- Cache behavior is preserved
- Error handling is robust
License
MIT
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.