Slack-MCP

Slack-MCP

A Message Control Protocol server that integrates with Slack to provide channel management, messaging capabilities, and log monitoring across multiple servers, enabling teams to share logs and receive automated alerts in Slack channels.

Category
Visit Server

README

slack-mcp

MCP server for Slack with log monitoring capabilities

🚀 Features

Core Slack Integration

  • Channel Management: Join channels and retrieve message history
  • Messaging: Post messages and threaded replies
  • Commands: Execute Slack slash commands
  • Reactions: Add emoji reactions to messages
  • Authentication: Verify identity and permissions

Log Monitoring & Team Collaboration

  • Server Log Reading: Access logs from any MCP server or application
  • Automated Alerts: Post log analysis to Slack channels
  • Team Debugging: Share logs instantly with team members
  • Multi-Server Monitoring: Monitor logs from multiple services

🏗️ Architecture

┌─────────────────────┐    ┌─────────────────────┐    ┌─────────────────────┐
│    User/Team        │───▶│   Pipeline-Toolkit  │───▶│   Slack-MCP-Logger  │
│  (Natural Language) │    │   (AI Orchestrator) │    │   (Slack Specialist)│
└─────────────────────┘    └─────────────────────┘    └─────────────────────┘
                                      ▲                          │
                                      │                          ▼
                           ┌─────────────────────┐    ┌─────────────────────┐
                           │   Log Files         │    │    Slack API        │
                           │ • pipeline_bot.log  │    │ • Channels          │
                           │ • testing_farm.log  │    │ • Messages          │
                           │ • application.log   │    │ • Reactions         │
                           │ • error.log         │    │ • Commands          │
                           └─────────────────────┘    └─────────────────────┘

Workflow Example

  1. User: "Check recent pipeline logs and alert team if errors found"
  2. Pipeline-Toolkit AI: Understands intent, orchestrates actions
  3. Slack-MCP-Logger:
    • Reads logs via get_server_logs()
    • Posts alerts via post_message()
    • Adds reactions via add_reaction()
  4. Result: Team gets notified in Slack with actionable log data

🛠️ Built-in Tools

1. Channel Management

get_channel_history(channel_id: str) -> list[dict]
join_channel(channel_id: str, skip_log: bool = False) -> bool

2. Messaging

post_message(channel_id: str, message: str, thread_ts: str = "", skip_log: bool = False) -> bool
post_command(channel_id: str, command: str, text: str, skip_log: bool = False) -> bool

3. Reactions & Interactions

add_reaction(channel_id: str, message_ts: str, reaction: str) -> bool

4. Authentication

whoami() -> str

5. 🆕 Log Monitoring

get_server_logs(log_file_path: str, lines: int = 50) -> str

📋 Usage Examples

Log Monitoring & Team Alerts

# Read recent pipeline logs
logs = get_server_logs("logs/pipeline_bot.log", 100)

# Alert team with logs
post_message("C-DEV-TEAM", f"🚨 Pipeline Issues:\n{logs}")

# Mark for urgent attention  
add_reaction("C-DEV-TEAM", message_ts, "rotating_light")

Automated Monitoring Workflow

# Check multiple log sources
pipeline_logs = get_server_logs("logs/pipeline_bot.log", 50)
error_logs = get_server_logs("/var/log/app/error.log", 30)

# Post to different channels based on content
if "ERROR" in pipeline_logs:
    post_message("C-ALERTS", f"⚠️ Pipeline errors:\n{pipeline_logs}")
    
if "CRITICAL" in error_logs:
    post_message("C-INCIDENTS", f"🚨 Critical app errors:\n{error_logs}")

Daily Team Updates

# Morning standup automation
daily_logs = get_server_logs("logs/pipeline_bot.log", 200)
post_message("C-STANDUP", f"☀️ Overnight activity summary:\n{daily_logs}")

🚀 Running with Podman or Docker

You can run the slack-mcp server in a container using Podman or Docker:

Example configuration for running with Podman:

{
  "mcpServers": {
    "slack": {
      "command": "podman",
      "args": [
        "run",
        "-i",
        "--rm",
        "-e", "SLACK_XOXC_TOKEN",
        "-e", "SLACK_XOXD_TOKEN",
        "-e", "MCP_TRANSPORT",
        "-e", "LOGS_CHANNEL_ID",
        "quay.io/redhat-ai-tools/slack-mcp"
      ],
      "env": {
        "SLACK_XOXC_TOKEN": "xoxc-...",
        "SLACK_XOXD_TOKEN": "xoxd-...",
        "MCP_TRANSPORT": "stdio",
        "LOGS_CHANNEL_ID": "C7000000",
      }
    }
  }
}

🌐 Running with non-stdio transport

To run the server with a non-stdio transport (such as SSE), set the MCP_TRANSPORT environment variable to a value other than stdio (e.g., sse).

Example configuration to connect to a non-stdio MCP server:

{
  "mcpServers": {
    "slack": {
      "url": "https://slack-mcp.example.com/sse",
      "headers": {
        "X-Slack-Web-Token": "xoxc-...",
        "X-Slack-Cookie-Token": "xoxd-..."
      }
    }
  }
}

🔐 Authentication

Extract your Slack XOXC and XOXD tokens easily using browser extensions or Selenium automation: https://github.com/maorfr/slack-token-extractor.

🔧 Environment Variables

  • SLACK_XOXC_TOKEN: Slack web token (required)
  • SLACK_XOXD_TOKEN: Slack cookie token (required)
  • MCP_TRANSPORT: Transport mode (stdio or sse, default: stdio)
  • LOGS_CHANNEL_ID: Channel ID for logging MCP operations (required)
  • LOG_BASE_PATH: Optional base path for log file access security

🤝 Integration with Pipeline-Toolkit

This MCP server works seamlessly with Pipeline-Toolkit to provide:

  • Natural Language Processing: Ask questions in plain English
  • Intelligent Tool Selection: AI chooses the right tools automatically
  • Multi-Server Coordination: Monitor logs from multiple MCP servers
  • Team Collaboration: Share insights and alerts through Slack

Example Integration

# In Pipeline-Toolkit
"Check recent logs and update the team if there are any errors"

# Results in:
# 1. get_server_logs("logs/pipeline_bot.log", 100)
# 2. AI analysis of log content
# 3. post_message("C-TEAM", error_summary) if issues found
# 4. add_reaction() for team attention

📊 Use Cases

  • DevOps Monitoring: Automated log analysis and team alerts
  • Incident Response: Quick log sharing and team coordination
  • Daily Standups: Automated activity summaries
  • Build Monitoring: Pipeline status updates and failure alerts
  • Multi-Service Debugging: Centralized log access across services

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured