SkyeNet-MCP-ACE

SkyeNet-MCP-ACE

Enables AI agents to execute server-side JavaScript and perform CRUD operations directly on ServiceNow instances with context bloat reduction features for efficient token usage.

Category
Visit Server

README

SkyeNet-MCP-ACE

ServiceNow Background Script Execution for AI Agents - A Model Context Protocol (MCP) server that enables AI agents to execute server-side JavaScript directly on ServiceNow instances with context bloat reduction features.

🚀 Quick Start

Prerequisites

  • Node.js 20+ (system-wide installation recommended)
  • ServiceNow instance with API access
  • Root/sudo access for system-wide installation

Installation

# Clone the repository
git clone https://github.com/skyenet/skyenet-mcp-ace.git
cd skyenet-mcp-ace

# Bulletproof deployment (handles all edge cases)
sudo ./bulletproof-deploy.sh

# Verify installation
./bulletproof-verify.sh

Configuration

Create your ServiceNow credentials file:

# Copy the example file
cp servicenow-ace.env.example ~/.servicenow-ace.env

# Edit with your ServiceNow details
nano ~/.servicenow-ace.env

Required environment variables:

SNOW_INSTANCE=https://your-instance.service-now.com
SNOW_USERNAME=your-username
SNOW_PASSWORD=your-password

Codex Integration

Add to your Codex configuration (/etc/codex/config.toml):

[[mcp.servers.skyenet-ace]]
command = "/usr/local/sbin/skyenet-mcp-ace-server"
args = []

🛠️ Available Tools

1. execute_background_script

Execute server-side JavaScript directly on ServiceNow instances.

Parameters:

  • script (string): The JavaScript code to execute
  • quiet (boolean, optional): Ultra-minimal response mode

Example:

// Get user information
var user = new GlideRecord('sys_user');
user.get('admin');
gs.print(user.getDisplayValue());

2. execute_table_operation

Perform CRUD operations on ServiceNow tables with context bloat reduction.

Parameters:

  • operation (string): GET, POST, PUT, DELETE
  • table (string): Table name (e.g., 'sys_user', 'incident')
  • sys_id (string, optional): Record sys_id for specific operations
  • sys_ids (array, optional): Multiple sys_ids for batch operations
  • fields (array, optional): Specific fields to retrieve
  • query (string, optional): Encoded query string
  • limit (number, optional): Maximum records to return
  • strict_fields (boolean, optional): Enable strict field validation
  • response_mode (string, optional): 'minimal' for reduced response size

Examples:

// Get user records
{
  "operation": "GET",
  "table": "sys_user",
  "fields": ["sys_id", "user_name", "email"],
  "limit": 10,
  "response_mode": "minimal"
}

// Create incident
{
  "operation": "POST",
  "table": "incident",
  "data": {
    "short_description": "New incident",
    "priority": "3"
  }
}

3. execute_updateset_operation

Manage ServiceNow Update Sets with context bloat reduction.

Parameters:

  • operation (string): recent, contents, set_working, get_working
  • update_set_sys_id (string, optional): Update Set sys_id
  • response_mode (string, optional): 'minimal' for reduced response size
  • quiet (boolean, optional): Ultra-minimal response mode

Examples:

// Get recent XML activity (minimal mode)
{
  "operation": "recent",
  "response_mode": "minimal"
}

// Set working update set
{
  "operation": "set_working",
  "update_set_sys_id": "abc123def456",
  "quiet": true
}

🔧 Context Bloat Reduction Features

Minimal Mode

  • Table API: Truncates large fields, limits records, removes redundant data
  • Update Sets: Limits to 5 records, compact summaries, flattened structure
  • Background Scripts: Truncates output, removes verbose logging

Quiet Mode

  • Ultra-minimal responses: Only success/failure status
  • No verbose output: Essential information only
  • Reduced token usage: 90%+ reduction in response size

Response Size Examples

  • Standard Table API: ~15KB
  • Minimal Table API: ~700 bytes
  • Quiet Update Set: ~300 bytes
  • Minimal Update Set: ~2.6KB

🔄 Maintenance

Update Installation

# Pull latest changes
git pull origin main

# Re-run bulletproof deployment
sudo ./bulletproof-deploy.sh

# Verify everything works
./bulletproof-verify.sh

Clean Reinstall

# Clean everything
sudo rm -rf /usr/local/lib/node_modules/skyenet-mcp-ace
sudo rm -f /usr/local/sbin/skyenet-mcp-ace-server

# Re-run bulletproof deployment
sudo ./bulletproof-deploy.sh

# Verify
./bulletproof-verify.sh

🚨 Troubleshooting

Server Won't Start

# Check server binary
ls -la /usr/local/sbin/skyenet-mcp-ace-server

# Test manually
/usr/local/sbin/skyenet-mcp-ace-server

# Check Node.js version
/usr/bin/node --version

Codex Timeout Issues

# Verify server works
echo '{"jsonrpc": "2.0", "id": 1, "method": "tools/list"}' | /usr/local/sbin/skyenet-mcp-ace-server

# Check Codex configuration
cat /etc/codex/config.toml | grep skyenet

Permission Issues

# Fix permissions
sudo chmod +x /usr/local/sbin/skyenet-mcp-ace-server

# Verify ownership
sudo chown root:root /usr/local/sbin/skyenet-mcp-ace-server

📊 Project Structure

SkyeNet-MCP-ACE/
├── bulletproof-deploy.sh    # Bulletproof deployment script
├── bulletproof-verify.sh    # Comprehensive verification
├── src/                     # TypeScript source code
│   ├── index.ts            # Main MCP server
│   ├── servicenow/         # ServiceNow integration
│   └── utils/               # Utility functions
├── build/                  # Compiled JavaScript
└── README.md              # This file

🎯 Key Features

  • Context Bloat Reduction: Minimal and quiet modes for AI agents
  • Bulletproof Deployment: Handles all edge cases automatically
  • Multi-User Compatibility: Works for all users system-wide
  • Comprehensive Verification: Tests all scenarios
  • ServiceNow Integration: Direct API access with error handling
  • Update Set Management: Full lifecycle support
  • Table Operations: CRUD with field validation

🔒 Security

  • Credential Management: Separate from MCP-Connect
  • Field Validation: Prevents injection attacks
  • Error Handling: Secure error responses
  • System-wide Installation: Proper permissions

📈 Performance

  • Response Times: < 3 seconds for most operations
  • Memory Usage: Optimized for AI agent interactions
  • Token Efficiency: 90%+ reduction in context bloat
  • Reliability: Bulletproof deployment ensures stability

For detailed deployment instructions, see the bulletproof deployment script comments.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured