Skeleton MCP Server

Skeleton MCP Server

A template project for building Model Context Protocol servers with FastMCP framework, Docker support, and example CRUD API implementation to help developers quickly bootstrap their own MCP servers.

Category
Visit Server

README

Skeleton MCP Server

A template project for building Model Context Protocol (MCP) servers. This skeleton provides a solid foundation with best practices, Docker support, and example implementations.

Features

  • FastMCP framework for easy MCP server development
  • Docker and Docker Compose support for containerized deployment
  • VS Code Dev Container configuration for consistent development environments
  • Example CRUD API implementation to demonstrate patterns
  • Test suite with pytest
  • Claude Code integration with custom commands

Quick Start

Prerequisites

  • Python 3.10 or higher
  • uv package manager (recommended)
  • Docker (optional, for containerized deployment)

Installation

  1. Clone this repository and rename it for your project:
git clone <this-repo> my-mcp-server
cd my-mcp-server
  1. Rename the package:

    • Rename src/skeleton_mcp to src/your_project_name
    • Update pyproject.toml with your project name and metadata
    • Update imports in all Python files
  2. Install dependencies:

uv sync
  1. Create your environment file:
cp .env.example .env
# Edit .env with your API credentials
  1. Run the server:
uv run skeleton-mcp

Project Structure

skeleton_mcp/
├── src/skeleton_mcp/
│   ├── __init__.py          # Package initialization
│   ├── server.py            # Main MCP server entry point
│   ├── client.py            # API client for backend communication
│   ├── types.py             # TypedDict definitions
│   ├── api/                  # API modules
│   │   ├── __init__.py
│   │   └── example.py       # Example CRUD operations
│   └── utils/               # Utility modules
│       └── __init__.py
├── tests/                   # Test suite
│   ├── conftest.py          # Pytest fixtures
│   ├── test_example_api.py  # API tests
│   └── test_server.py       # Server tests
├── docs/                    # Documentation
├── .claude/                 # Claude Code configuration
│   ├── commands/            # Custom slash commands
│   └── settings.local.json  # Permission settings
├── .devcontainer/           # VS Code dev container
├── Dockerfile               # Container image definition
├── docker-compose.yml       # Production compose file
├── docker-compose.devcontainer.yml  # Dev container compose
├── pyproject.toml           # Project configuration
├── CLAUDE.md               # Claude context documentation
└── README.md               # This file

Development

Running Tests

uv run pytest -v

Linting

uv run ruff check src/ tests/
uv run ruff format src/ tests/

Building

uv build

Adding Your Own Tools

  1. Create a new module in src/skeleton_mcp/api/:
# src/skeleton_mcp/api/my_api.py

async def my_tool(param1: str, param2: int = 10) -> dict:
    """
    Description of what this tool does.

    Args:
        param1: Description of param1
        param2: Description of param2

    Returns:
        Description of return value
    """
    # Your implementation here
    return {"result": "success"}
  1. Register the tool in server.py:
from .api import my_api

mcp.tool()(my_api.my_tool)
  1. Add types in types.py if needed:
class MyDataType(TypedDict):
    field1: str
    field2: int

Docker Deployment

Build and run with Docker Compose:

docker compose up --build

For development with VS Code Dev Containers:

  1. Open the project in VS Code
  2. Install the "Dev Containers" extension
  3. Click "Reopen in Container" when prompted

Claude Desktop Integration

Add to your Claude Desktop configuration (claude_desktop_config.json):

{
  "mcpServers": {
    "skeleton-mcp": {
      "command": "docker",
      "args": [
        "run",
        "-i",
        "--rm",
        "--env-file",
        "/path/to/your/.env",
        "skeleton-mcp:latest"
      ]
    }
  }
}

Or for local development:

{
  "mcpServers": {
    "skeleton-mcp": {
      "command": "uv",
      "args": ["--directory", "/path/to/skeleton_mcp", "run", "skeleton-mcp"]
    }
  }
}

Available Tools

Tool Description
health_check Check server health and configuration status
list_items List all items with filtering and pagination
get_item Get a specific item by ID
create_item Create a new item
update_item Update an existing item
delete_item Delete an item

Environment Variables

Variable Description Default
API_KEY Your API key for authentication (required)
API_BASE_URL Base URL for the backend API https://api.example.com/v1
API_TIMEOUT Request timeout in seconds 30
DEBUG Enable debug logging false

License

MIT License - See LICENSE file for details.

Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Run tests and linting
  5. Submit a pull request

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured