Skeleton MCP Server
A template project for building Model Context Protocol servers with FastMCP framework, Docker support, and example CRUD API implementation to help developers quickly bootstrap their own MCP servers.
README
Skeleton MCP Server
A template project for building Model Context Protocol (MCP) servers. This skeleton provides a solid foundation with best practices, Docker support, and example implementations.
Features
- FastMCP framework for easy MCP server development
- Docker and Docker Compose support for containerized deployment
- VS Code Dev Container configuration for consistent development environments
- Example CRUD API implementation to demonstrate patterns
- Test suite with pytest
- Claude Code integration with custom commands
Quick Start
Prerequisites
- Python 3.10 or higher
- uv package manager (recommended)
- Docker (optional, for containerized deployment)
Installation
- Clone this repository and rename it for your project:
git clone <this-repo> my-mcp-server
cd my-mcp-server
-
Rename the package:
- Rename
src/skeleton_mcptosrc/your_project_name - Update
pyproject.tomlwith your project name and metadata - Update imports in all Python files
- Rename
-
Install dependencies:
uv sync
- Create your environment file:
cp .env.example .env
# Edit .env with your API credentials
- Run the server:
uv run skeleton-mcp
Project Structure
skeleton_mcp/
├── src/skeleton_mcp/
│ ├── __init__.py # Package initialization
│ ├── server.py # Main MCP server entry point
│ ├── client.py # API client for backend communication
│ ├── types.py # TypedDict definitions
│ ├── api/ # API modules
│ │ ├── __init__.py
│ │ └── example.py # Example CRUD operations
│ └── utils/ # Utility modules
│ └── __init__.py
├── tests/ # Test suite
│ ├── conftest.py # Pytest fixtures
│ ├── test_example_api.py # API tests
│ └── test_server.py # Server tests
├── docs/ # Documentation
├── .claude/ # Claude Code configuration
│ ├── commands/ # Custom slash commands
│ └── settings.local.json # Permission settings
├── .devcontainer/ # VS Code dev container
├── Dockerfile # Container image definition
├── docker-compose.yml # Production compose file
├── docker-compose.devcontainer.yml # Dev container compose
├── pyproject.toml # Project configuration
├── CLAUDE.md # Claude context documentation
└── README.md # This file
Development
Running Tests
uv run pytest -v
Linting
uv run ruff check src/ tests/
uv run ruff format src/ tests/
Building
uv build
Adding Your Own Tools
- Create a new module in
src/skeleton_mcp/api/:
# src/skeleton_mcp/api/my_api.py
async def my_tool(param1: str, param2: int = 10) -> dict:
"""
Description of what this tool does.
Args:
param1: Description of param1
param2: Description of param2
Returns:
Description of return value
"""
# Your implementation here
return {"result": "success"}
- Register the tool in
server.py:
from .api import my_api
mcp.tool()(my_api.my_tool)
- Add types in
types.pyif needed:
class MyDataType(TypedDict):
field1: str
field2: int
Docker Deployment
Build and run with Docker Compose:
docker compose up --build
For development with VS Code Dev Containers:
- Open the project in VS Code
- Install the "Dev Containers" extension
- Click "Reopen in Container" when prompted
Claude Desktop Integration
Add to your Claude Desktop configuration (claude_desktop_config.json):
{
"mcpServers": {
"skeleton-mcp": {
"command": "docker",
"args": [
"run",
"-i",
"--rm",
"--env-file",
"/path/to/your/.env",
"skeleton-mcp:latest"
]
}
}
}
Or for local development:
{
"mcpServers": {
"skeleton-mcp": {
"command": "uv",
"args": ["--directory", "/path/to/skeleton_mcp", "run", "skeleton-mcp"]
}
}
}
Available Tools
| Tool | Description |
|---|---|
health_check |
Check server health and configuration status |
list_items |
List all items with filtering and pagination |
get_item |
Get a specific item by ID |
create_item |
Create a new item |
update_item |
Update an existing item |
delete_item |
Delete an item |
Environment Variables
| Variable | Description | Default |
|---|---|---|
API_KEY |
Your API key for authentication | (required) |
API_BASE_URL |
Base URL for the backend API | https://api.example.com/v1 |
API_TIMEOUT |
Request timeout in seconds | 30 |
DEBUG |
Enable debug logging | false |
License
MIT License - See LICENSE file for details.
Contributing
- Fork the repository
- Create a feature branch
- Make your changes
- Run tests and linting
- Submit a pull request
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
E2B
Using MCP to run code via e2b.