Simple Code Review Assistant
Enables AI models to access GitHub repository information and search local documentation files. Provides three basic tools: fetching repository details, retrieving file contents from GitHub, and searching through local markdown documentation.
README
š§ Simple Code Review Assistant - MCP Assignment
Assignment Duration: 6-8 Hours
Target Audience: Intermediate Level Developers
Focus: Model Context Protocol (MCP) Basics
šÆ Learning Objectives
By completing this assignment, you will:
- Build a basic MCP server using Model Context Protocol
- Implement simple tool interfaces for AI models
- Practice GitHub API integration
- Understand how AI models connect to external data sources
š Prerequisites
- Python 3.11+ experience
- Basic understanding of REST APIs
- Familiarity with GitHub API
- Basic knowledge of AI/LLM concepts
š Quick Start
1. Environment Setup
# Clone and navigate to project
cd MCPAssignment
# Create virtual environment
python3 -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
# Install dependencies
pip install -r requirements.txt
2. Configuration
Create .env file in the project root:
GITHUB_TOKEN=your_github_token_here
GITHUB_REPO_OWNER=your_github_username
GITHUB_REPO_NAME=your_repository_name
3. Run the MCP Server
# Start the MCP Server
python server.py
# Test the server (in another terminal)
python client.py
š Project Structure
mcp-code-review/
āāā README.md # Your implementation documentation
āāā requirements.txt # Dependencies
āāā .env.example # Environment template
āāā server.py # Single MCP Server file
āāā client.py # Simple client to test server
āāā docs/
āāā api_guide.md # Sample documentation
āāā setup_guide.md # Sample documentation
šļø System Architecture
MCP Tools (Keep it Simple!)
| Tool | Purpose | Implementation |
|---|---|---|
| get_repository | Get repo info from GitHub | GitHub API call |
| search_docs | Search local documentation | Simple file search |
| get_file_content | Read file from repo | GitHub API call |
Simple Flow
Client ā MCP Server ā GitHub API / Local Files ā Response
š Core Requirements (Simplified)
Must-Have Features (6-8 hours scope)
-
Basic MCP Server
- Implement ONE MCP server file (
server.py) - Support 3 simple tools (listed above)
- Follow basic MCP protocol
- Handle errors gracefully
- Implement ONE MCP server file (
-
GitHub Integration
- Connect to GitHub API using token
- Implement
get_repositorytool - Implement
get_file_contenttool - Add basic rate limiting
-
Documentation Search
- Implement
search_docstool for local files - Search through markdown files in
/docsfolder - Return relevant file content
- Support simple keyword matching
- Implement
-
Simple Client
- Create
client.pyto test your MCP server - Demonstrate all 3 tools working
- Show real GitHub data retrieval
- Display search results
- Create
š§ Implementation Steps
Step 1: Setup
pip install mcp requests
# Create basic file structure
# Setup GitHub token
Step 2: Basic MCP Server
- Implement MCP protocol basics
- Add the 3 required tools
- Test with simple responses
Step 3: GitHub Integration
- Connect to GitHub API
- Implement repository and file tools
- Add error handling
Step 4: Documentation Search
- Create simple file search
- Add sample documentation files
- Test search functionality
Step 5: Client & Testing
- Build simple client
- Test all tools
- Create demo
š Submission Requirements (Minimal)
Required Files
- ā
server.py- Working MCP server - ā
client.py- Simple test client - ā
requirements.txt- Dependencies - ā
.env.example- Environment template - ā
Sample docs in
/docsfolder
Demo Requirements
- ā Show MCP server starting up
- ā Demonstrate GitHub repository access
- ā Show documentation search working
- ā Explain your implementation approach
š Resources
š§ Development Commands
# Start MCP Server
python server.py
# Test with client (in another terminal)
python client.py --test-all
# Test individual tools
python client.py --test-github
python client.py --test-docs
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.