Simple Code Review Assistant

Simple Code Review Assistant

Enables AI models to access GitHub repository information and search local documentation files. Provides three basic tools: fetching repository details, retrieving file contents from GitHub, and searching through local markdown documentation.

Category
Visit Server

README

šŸ”§ Simple Code Review Assistant - MCP Assignment

Assignment Duration: 6-8 Hours
Target Audience: Intermediate Level Developers
Focus: Model Context Protocol (MCP) Basics

šŸŽÆ Learning Objectives

By completing this assignment, you will:

  • Build a basic MCP server using Model Context Protocol
  • Implement simple tool interfaces for AI models
  • Practice GitHub API integration
  • Understand how AI models connect to external data sources

šŸ“‹ Prerequisites

  • Python 3.11+ experience
  • Basic understanding of REST APIs
  • Familiarity with GitHub API
  • Basic knowledge of AI/LLM concepts

šŸš€ Quick Start

1. Environment Setup

# Clone and navigate to project
cd MCPAssignment

# Create virtual environment
python3 -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt

2. Configuration

Create .env file in the project root:

GITHUB_TOKEN=your_github_token_here
GITHUB_REPO_OWNER=your_github_username
GITHUB_REPO_NAME=your_repository_name

3. Run the MCP Server

# Start the MCP Server
python server.py

# Test the server (in another terminal)
python client.py

šŸ“ Project Structure

mcp-code-review/
ā”œā”€ā”€ README.md                 # Your implementation documentation
ā”œā”€ā”€ requirements.txt          # Dependencies
ā”œā”€ā”€ .env.example             # Environment template
ā”œā”€ā”€ server.py                # Single MCP Server file
ā”œā”€ā”€ client.py                # Simple client to test server
└── docs/
    ā”œā”€ā”€ api_guide.md         # Sample documentation
    └── setup_guide.md       # Sample documentation

šŸ—ļø System Architecture

MCP Tools (Keep it Simple!)

Tool Purpose Implementation
get_repository Get repo info from GitHub GitHub API call
search_docs Search local documentation Simple file search
get_file_content Read file from repo GitHub API call

Simple Flow

Client → MCP Server → GitHub API / Local Files → Response

šŸ“‹ Core Requirements (Simplified)

Must-Have Features (6-8 hours scope)

  1. Basic MCP Server

    • Implement ONE MCP server file (server.py)
    • Support 3 simple tools (listed above)
    • Follow basic MCP protocol
    • Handle errors gracefully
  2. GitHub Integration

    • Connect to GitHub API using token
    • Implement get_repository tool
    • Implement get_file_content tool
    • Add basic rate limiting
  3. Documentation Search

    • Implement search_docs tool for local files
    • Search through markdown files in /docs folder
    • Return relevant file content
    • Support simple keyword matching
  4. Simple Client

    • Create client.py to test your MCP server
    • Demonstrate all 3 tools working
    • Show real GitHub data retrieval
    • Display search results

šŸ”§ Implementation Steps

Step 1: Setup

pip install mcp requests
# Create basic file structure
# Setup GitHub token

Step 2: Basic MCP Server

  • Implement MCP protocol basics
  • Add the 3 required tools
  • Test with simple responses

Step 3: GitHub Integration

  • Connect to GitHub API
  • Implement repository and file tools
  • Add error handling

Step 4: Documentation Search

  • Create simple file search
  • Add sample documentation files
  • Test search functionality

Step 5: Client & Testing

  • Build simple client
  • Test all tools
  • Create demo

šŸ“ Submission Requirements (Minimal)

Required Files

  • āœ… server.py - Working MCP server
  • āœ… client.py - Simple test client
  • āœ… requirements.txt - Dependencies
  • āœ… .env.example - Environment template
  • āœ… Sample docs in /docs folder

Demo Requirements

  • āœ… Show MCP server starting up
  • āœ… Demonstrate GitHub repository access
  • āœ… Show documentation search working
  • āœ… Explain your implementation approach

šŸ”— Resources

šŸ”§ Development Commands

# Start MCP Server
python server.py

# Test with client (in another terminal)
python client.py --test-all

# Test individual tools
python client.py --test-github
python client.py --test-docs

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured