Signoz MCP Server

Signoz MCP Server

An MCP server that enables AI assistants to interact with Signoz observability platform, providing tools to query dashboards, metrics, traces, logs, and APM data with time range support.

Category
Visit Server

README

Signoz MCP Server

Watch Working Demo on Cursor 📽️ https://youtube.com/shorts/jxjmGyXXz7A

Available Tools

The following tools are available via the MCP server:

  • test_connection: Verify connectivity to your Signoz instance and configuration.
  • fetch_dashboards: List all available dashboards from Signoz.
  • fetch_dashboard_details: Retrieve detailed information about a specific dashboard by its ID. This information contains the metadata of the dashboard, not the live panel data.
  • fetch_dashboard_data: Fetch all panel data for a given dashboard by name and time range.
  • fetch_apm_metrics: Retrieve standard APM metrics (request rate, error rate, latency, apdex, etc.) for a given service and time range.
  • fetch_services: Fetch all instrumented services from Signoz with optional time range filtering.
  • execute_clickhouse_query: Execute custom Clickhouse SQL queries via the Signoz API with time range support.
  • execute_builder_query: Execute Signoz builder queries for custom metrics and aggregations with time range support.
  • fetch_traces_or_logs: Fetch traces or logs from SigNoz using ClickHouse SQL. Specify data_type ('traces' or 'logs'), time range, service name, and limit. Returns tabular results for traces or logs.

🚀 Usage & Requirements

1. Get Your Signoz API Endpoint & (Optional) API Key

  1. Ensure you have a running Signoz instance (self-hosted or cloud).
  2. (Optional) If your Signoz instance requires an API key for the health endpoint, generate or obtain it from your Signoz UI.

2. Installation & Running Options

2A. Install & Run with uv (Recommended for Local Development)

2A.1. Install dependencies with uv

uv venv .venv
source .venv/bin/activate
uv sync

2A.2. Run the server with uv

uv run -m src.signoz_mcp_server.mcp_server
  • You can also use uv to run any other entrypoint scripts as needed.
  • Make sure your config.yaml is in the same directory as mcp_server.py or set the required environment variables (see Configuration section).

2B. Run with Docker Compose (Recommended for Production/Containerized Environments)

  1. Edit src/signoz_mcp_server/config.yaml with your Signoz details (host, API key if needed).
  2. Start the server:
    docker-compose up -d
    
    • The server will run in HTTP (SSE) mode on port 8000 by default.
    • You can override configuration with environment variables (see below).

2C. Run with Docker Image (Manual)

  1. Build the image:
    docker build -t signoz-mcp-server .
    
  2. Run the container (YAML config fallback):
    docker run -d \
      -p 8000:8000 \
      -v $(pwd)/src/signoz_mcp_server/config.yaml:/app/config.yaml:ro \
      --name signoz-mcp-server \
      signoz-mcp-server
    
  3. Or run with environment variables (recommended for CI/Docker MCP clients):
    docker run -d \
      -p 8000:8000 \
      -e SIGNOZ_HOST="https://your-signoz-instance.com" \
      -e SIGNOZ_API_KEY="your-signoz-api-key-here" \
      -e SIGNOZ_SSL_VERIFY="true" \
      -e MCP_SERVER_PORT=8000 \
      -e MCP_SERVER_DEBUG=true \
      --name signoz-mcp-server \
      signoz-mcp-server
    

3. Configuration

The server loads configuration in the following order of precedence:

  1. Environment Variables (recommended for Docker/CI):
    • SIGNOZ_HOST: Signoz instance URL (e.g. https://your-signoz-instance.com)
    • SIGNOZ_API_KEY: Signoz API key (optional)
    • SIGNOZ_SSL_VERIFY: true or false (default: true)
    • MCP_SERVER_PORT: Port to run the server on (default: 8000)
    • MCP_SERVER_DEBUG: true or false (default: true)
  2. YAML file fallback (config.yaml):
    signoz:
      host: "https://your-signoz-instance.com"
      api_key: "your-signoz-api-key-here" # Optional
      ssl_verify: "true"
    server:
      port: 8000
      debug: true
    

4. Integration with AI Assistants (e.g., Claude Desktop, Cursor)

You can integrate this MCP server with any tool that supports the MCP protocol. Here are the main options:

4A. Using Local Setup (with uv)

Before running the server locally, install dependencies and run with uv:

uv sync

Then add to your client configuration (e.g., claude-desktop.json):

{
  "mcpServers": {
    "signoz": {
      "command": "uv",
      "args": ["run", "/full/path/to/src/signoz_mcp_server/mcp_server.py"],
      "env": {
        "SIGNOZ_HOST": "https://your-signoz-instance.com",
        "SIGNOZ_API_KEY": "your-signoz-api-key-here",
        "SIGNOZ_SSL_VERIFY": "true"
      }
    }
  }
}
  • Ensure your config.yaml is in the same directory as mcp_server.py or update the path accordingly.

4B. Using Docker Compose or Docker (with environment variables, mcp-grafana style)

{
  "mcpServers": {
    "signoz": {
      "command": "docker",
      "args": [
        "run",
        "--rm",
        "-i",
        "-e",
        "SIGNOZ_HOST",
        "-e",
        "SIGNOZ_API_KEY",
        "-e",
        "SIGNOZ_SSL_VERIFY",
        "ddroid/signoz-mcp-server",
        "-t",
        "stdio"
      ],
      "env": {
        "SIGNOZ_HOST": "https://your-signoz-instance.com",
        "SIGNOZ_API_KEY": "your-signoz-api-key-here",
        "SIGNOZ_SSL_VERIFY": "true"
      }
    }
  }
}
  • The -t stdio argument is supported for compatibility with Docker MCP clients (forces stdio handshake mode).
  • Adjust the volume path or environment variables as needed for your deployment.

4C. Connecting to an Already Running MCP Server (HTTP/SSE)

If you have an MCP server already running (e.g., on a remote host, cloud VM, or Kubernetes), you can connect your AI assistant or tool directly to its HTTP endpoint.

Example: Claude Desktop or Similar Tool

{
  "mcpServers": {
    "signoz": {
      "url": "http://your-server-host:8000/mcp"
    }
  }
}
  • Replace your-server-host with the actual host where your MCP server is running.
  • For local setup, use localhost as the server host (i.e., http://localhost:8000/mcp).
  • Use http for local or unsecured deployments, and https for production or secured deployments.
  • Make sure the server is accessible from your client machine (check firewall, security group, etc.).

Example: MCP Config YAML

mcp:
  endpoint: "http://your-server-host:8000/mcp"
  protocolVersion: "2025-06-18"
  • Replace your-server-host with the actual host where your MCP server is running.
  • For local setup, use localhost as the server host (i.e., http://localhost:8000/mcp).
  • Use http or https in the URL schema depending on how you've deployed the MCP server.
  • No need to specify command or args—just point to the HTTP endpoint.
  • This works for any tool or assistant that supports MCP over HTTP.
  • The server must be running in HTTP (SSE) mode (the default for this implementation).

Health Check

curl http://localhost:8000/health

The server runs on port 8000 by default.


5. Miscellaneous:

  1. Need help anywhere? Join our slack community and message on #mcp channel.
  2. Want to try without setting up? Follow this doc for a quickstart on DrDroid cloud platform.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured