shivonai-mcp

shivonai-mcp

Our MCP Tools are designed to enhance AI-driven automated interview services by ensuring a seamless and contextually relevant candidate assessment process. These tools leverage advanced AI models to analyze responses, evaluate competencies, and provide real-time feedback, ma

Category
Visit Server

README

ShivonAI

A Python package for integrating AI recruitment tools with various AI agent frameworks.

Features

  • Acess custom hiring tools for AI agents
  • Integrate MCP tools with popular AI agent frameworks:
    • LangChain
    • LlamaIndex
    • CrewAI
    • Agno

Generate auth_token

visit https://shivonai.com to generate your auth_token.

Installation

pip install shivonai[langchain]  # For LangChain
pip install shivonai[llamaindex]  # For LlamaIndex
pip install shivonai[crewai]     # For CrewAI
pip install shivonai[agno]       # For Agno
pip install shivonai[all]        # For all frameworks

Getting Started

LangChain Integration

from langchain_openai import ChatOpenAI
from langchain.agents import initialize_agent, AgentType
from shivonai.lyra import langchain_toolkit

# Replace with your actual MCP server details
auth_token = "shivonai_auth_token"

# Get LangChain tools
tools = langchain_toolkit(auth_token)

# Print available tools
print(f"Available tools: {[tool.name for tool in tools]}")

# Initialize LangChain agent with tools
llm = ChatOpenAI(
            temperature=0,
            model_name="gpt-4-turbo",
            openai_api_key="openai-api-key"
        )

agent = initialize_agent(
    tools=tools,
    llm=llm,
    agent=AgentType.ZERO_SHOT_REACT_DESCRIPTION,
    verbose=True
)

# Try running the agent with a simple task
try:
    result = agent.run("what listing I have?")
    print(f"Result: {result}")
except Exception as e:
    print(f"Error: {e}")

LlamaIndex Integration

from llama_index.llms.openai import OpenAI
from llama_index.core.agent import ReActAgent
from shivonai.lyra import llamaindex_toolkit

# Set up OpenAI API key - you'll need this to use OpenAI models with LlamaIndex
os.environ["OPENAI_API_KEY"] = "openai_api_key"

# Your MCP server authentication details
MCP_AUTH_TOKEN = "shivonai_auth_token"


def main():
    """Test LlamaIndex integration with ShivonAI."""
    print("Testing LlamaIndex integration with ShivonAI...")
    
    # Get LlamaIndex tools from your MCP server
    tools = llamaindex_toolkit(MCP_AUTH_TOKEN)
    print(f"Found {len(tools)} MCP tools for LlamaIndex:")
    
    for name, tool in tools.items():
        print(f"  - {name}: {tool.metadata.description[:60]}...")
    
    # Create a LlamaIndex agent with these tools
    llm = OpenAI(model="gpt-4")
    
    # Convert tools dictionary to a list
    tool_list = list(tools.values())
    
    # Create the ReAct agent
    agent = ReActAgent.from_tools(
        tools=tool_list,
        llm=llm,
        verbose=True
    )
    
    # Test the agent with a simple query that should use one of your tools
    # Replace this with a query that's relevant to your tools
    query = "what listings I have?"
    
    print("\nTesting agent with query:", query)
    response = agent.chat(query)
    
    print("\nAgent response:")
    print(response)

if __name__ == "__main__":
    main()

CrewAI Integration

from crewai import Agent, Task, Crew
from langchain_openai import ChatOpenAI  # or any other LLM you prefer
from shivonai.lyra import crew_toolkit
import os

os.environ["OPENAI_API_KEY"] = "oepnai_api_key"

llm = ChatOpenAI(temperature=0.7, model="gpt-4")

# Get CrewAI tools
tools = crew_toolkit("shivonai_auth_token")

# Print available tools
print(f"Available tools: {[tool.name for tool in tools]}")

# Create an agent with these tools
agent = Agent(
    role="Data Analyst",
    goal="Analyze data using custom tools",
    backstory="You're an expert data analyst with access to custom tools",
    tools=tools,
    llm=llm  # Provide the LLM here
)

# Create a task - note the expected_output field
task = Task(
    description="what listings I have?",
    expected_output="A detailed report with key insights and recommendations",
    agent=agent
)

crew = Crew(
    agents=[agent],
    tasks=[task])

result = crew.kickoff()
print(result)

Agno Integration

from agno.agent import Agent
from agno.models.openai import OpenAIChat
from shivonai.lyra import agno_toolkit
import os
from agno.models.aws import Claude

# Replace with your actual MCP server details
auth_token = "Shivonai_auth_token"

os.environ["OPENAI_API_KEY"] = "oepnai_api_key"

# Get Agno tools
tools = agno_toolkit(auth_token)

# Print available tools
print(f"Available MCP tools: {list(tools.keys())}")

# Create an Agno agent with tools
agent = Agent(
    model=OpenAIChat(id="gpt-3.5-turbo"),
    tools=list(tools.values()),
    markdown=True,
    show_tool_calls=True
)

# Try the agent with a simple task
try:
    agent.print_response("what listing are there?", stream=True)
except Exception as e:
    print(f"Error: {e}")

License

This project is licensed under a Proprietary License – see the LICENSE file for details.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured