Shared Memory MCP Server

Shared Memory MCP Server

Provides a shared context layer for AI agent teams to improve token efficiency through context deduplication and incremental state sharing. It enables multiple agents to coordinate tasks, share real-time discoveries, and manage dependencies while significantly reducing redundant data transmission.

Category
Visit Server

README

Shared Memory MCP Server

Solving coordination tax in agentic teams - where Opus + 4 Sonnets burns 15x tokens but only gets 1.9x performance.

Prerequisites

  • Node.js 18+
  • npm or yarn
  • Claude Desktop (for MCP integration)

The Problem

Current agentic team patterns have terrible token efficiency:

  • Traditional: 1 request × 4K tokens = 4K tokens
  • Agentic Team: 1 coordinator + 4 workers × 12K tokens each = 48K+ tokens
  • Efficiency: 1.9x performance / 15x cost = 12% efficiency

This MCP server provides shared memory for agentic teams to achieve 6x token efficiency while maintaining coordination benefits.

Core Features

1. Context Deduplication

  • Store shared context once, reference by key
  • 10:1 compression ratio with intelligent summarization
  • Workers get 100-token summaries instead of full context

2. Incremental State Sharing

  • Append-only discovery system
  • Workers share findings in real-time
  • Delta updates prevent retransmission

3. Work Coordination

  • Claim-based work distribution
  • Dependency tracking and resolution
  • Reactive task handoff between workers

4. Token Efficiency

  • Context compression and lazy loading
  • Delta updates since last version
  • Expansion on demand for specific sections

Installation

# Clone the repository
git clone https://github.com/haasonsaas/shared-memory-mcp.git
cd shared-memory-mcp

# Install dependencies
npm install

# Build the server
npm run build

Quick Start

# Run in development mode
npm run dev

# Or run the built server
npm start

# Test the agentic workflow
npm test
# or
npm run test-workflow

Usage Example

// 1. Create agentic session (coordinator)
const session = await mcp.callTool('create_agentic_session', {
  coordinator_id: 'opus-coordinator-1',
  worker_ids: ['sonnet-1', 'sonnet-2', 'sonnet-3', 'sonnet-4'],
  task_description: 'Analyze large codebase for performance issues',
  codebase_files: [...], // Full context stored once
  requirements: [...],
  constraints: [...]
});

// 2. Workers get compressed context (not full retransmission)
const context = await mcp.callTool('get_worker_context', {
  session_id: session.session_id,
  worker_id: 'sonnet-1'
}); // Returns summary + reference, not full context

// 3. Publish work units for coordination
await mcp.callTool('publish_work_units', {
  session_id: session.session_id,
  work_units: [
    { unit_id: 'analyze-auth', type: 'security', priority: 'high' },
    { unit_id: 'optimize-db', type: 'performance', dependencies: ['analyze-auth'] }
  ]
});

// 4. Workers claim and execute
await mcp.callTool('claim_work_unit', {
  session_id: session.session_id,
  unit_id: 'analyze-auth',
  worker_id: 'sonnet-1',
  estimated_duration_minutes: 15
});

// 5. Share discoveries incrementally
await mcp.callTool('add_discovery', {
  session_id: session.session_id,
  worker_id: 'sonnet-1', 
  discovery_type: 'vulnerability_found',
  data: { vulnerability: 'SQL injection in auth module' },
  affects_workers: ['sonnet-2'] // Notify relevant workers
});

// 6. Get only new updates (delta, not full context)
const delta = await mcp.callTool('get_context_delta', {
  session_id: session.session_id,
  worker_id: 'sonnet-2',
  since_version: 5 // Only get changes since version 5
});

Architecture

┌─────────────────┐    ┌─────────────────┐
│ Opus Coordinator│    │ Shared Memory   │
│                 │────│ MCP Server      │
│ - Task Planning │    │                 │
│ - Work Units    │    │ - Context Store │
│ - Coordination  │    │ - Discovery Log │
└─────────────────┘    │ - Work Queue    │
                       │ - Dependencies  │
┌─────────────────┐    └─────────────────┘
│ Sonnet Workers  │           │
│                 │───────────┘
│ - Specialized   │    
│ - Parallel      │    ┌─────────────────┐
│ - Coordinated   │    │ Token Efficiency│
└─────────────────┘    │                 │
                       │ 48K → 8K tokens │
                       │ 6x improvement  │
                       │ 1200% better ROI│
                       └─────────────────┘

Token Efficiency Strategies

Context Compression

// Instead of sending full context (12K tokens):
{
  full_context: { /* massive object */ }
}

// Send compressed reference (100 tokens):
{
  summary: "Task: Analyze TypeScript codebase...",
  reference_key: "ctx_123", 
  expansion_hints: ["codebase_files", "requirements"]
}

Delta Updates

// Instead of retransmitting everything:
get_full_context() // 12K tokens each time

// Send only changes:
get_context_delta(since_version: 5) // 200 tokens

Lazy Loading

// Workers request details only when needed:
expand_context_section("codebase_files") // 2K tokens
request_detail("file_content", "auth.ts") // 500 tokens

API Reference

Session Management

  • create_agentic_session - Initialize coordinator + workers
  • get_session_info - Get session details
  • update_session_status - Update session state

Context Management

  • get_worker_context - Get compressed context for worker
  • expand_context_section - Get detailed section data
  • get_context_delta - Get incremental updates

Work Coordination

  • publish_work_units - Publish available work
  • claim_work_unit - Claim work for execution
  • update_work_status - Update work progress

Discovery Sharing

  • add_discovery - Share findings with team
  • get_discoveries_since - Get recent discoveries

Dependency Resolution

  • declare_outputs - Declare future outputs
  • await_dependency - Wait for dependency
  • publish_output - Publish output for others

MCP Configuration

For Claude Desktop

  1. Copy the example configuration:

    cp claude-desktop-config.example.json claude-desktop-config.json
    
  2. Edit claude-desktop-config.json and update the path to your installation:

    {
      "mcpServers": {
        "shared-memory": {
          "command": "node",
          "args": ["/absolute/path/to/shared-memory-mcp/dist/server.js"]
        }
      }
    }
    
  3. Add this configuration to your Claude Desktop config file:

    • macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
    • Windows: %APPDATA%\Claude\claude_desktop_config.json
    • Linux: ~/.config/Claude/claude_desktop_config.json

Note: The claude-desktop-config.json file is gitignored as it contains machine-specific paths.

Performance Benefits

Metric Traditional Agentic (Current) Shared Memory MCP
Token Usage 4K 48K+ 8K
Performance Gain 1x 1.9x 1.9x
Cost Efficiency 100% 12% 1200%
Coordination None Poor Excellent

License

MIT

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured