SerpApi MCP Server
Enables searches across multiple search engines (Google, Bing, YouTube, etc.) and retrieval of parsed search results through SerpApi, allowing natural language queries to access live search engine data.
README
<img src="https://user-images.githubusercontent.com/307597/154772945-1b7dba5f-21cf-41d0-bb2e-65b6eff4aaaf.png" width="30" height="30"/> SerpApi MCP Server
A Model Context Protocol (MCP) server implementation that integrates with SerpApi for comprehensive search engine results and data extraction.
Features
- Multi-Engine Search: Google, Bing, Yahoo, DuckDuckGo, Yandex, Baidu, YouTube, eBay, Walmart, and more
- Real-time Weather Data: Location-based weather with forecasts via search queries
- Stock Market Data: Company financials and market data through search integration
- Dynamic Result Processing: Automatically detects and formats different result types
- Raw JSON Support: Option to return full unprocessed API responses
- Structured Results: Clean, formatted output optimized for AI consumption
- Rate Limit Handling: Automatic retry logic with exponential backoff
- Error Recovery: Comprehensive error handling and user feedback
Installation
git clone https://github.com/serpapi/mcp-server.git
cd mcp-server
uv sync
Configuration
Environment Variables
Required
SERPAPI_API_KEY: Your SerpApi API key from serpapi.com/manage-api-key
Setup Steps
- Get API Key: Sign up at SerpApi and get your API key
- Create .env file:
SERPAPI_API_KEY=your_api_key_here - Run Server:
uv run src/server.py
Client Configurations
Claude Desktop
Add to your claude_desktop_config.json:
{
"mcpServers": {
"serpapi": {
"command": "uv",
"args": ["run", "/path/to/mcp-server/src/server.py"],
"env": {
"SERPAPI_API_KEY": "your_api_key_here"
}
}
}
}
VS Code
Add to your VS Code settings or .vscode/mcp.json:
{
"inputs": [
{
"type": "promptString",
"id": "apiKey",
"description": "SerpApi API Key",
"password": true
}
],
"servers": {
"serpapi": {
"command": "uv",
"args": ["run", "src/server.py"],
"env": {
"SERPAPI_API_KEY": "${input:apiKey}"
}
}
}
}
Cursor
For Cursor v0.48.6+, add to MCP Servers:
{
"mcpServers": {
"serpapi-mcp": {
"command": "uv",
"args": ["run", "src/server.py"],
"env": {
"SERPAPI_API_KEY": "YOUR-API-KEY"
}
}
}
}
Available Tools
Universal Search Tool (search)
The consolidated search tool that handles all search types through a single interface.
Best for:
- Any type of search query (web, weather, stock, images, news, shopping)
- Unified interface across all search engines and result types
- Both formatted output and raw JSON responses
Parameters:
params(Dict): Search parameters including:q(str): Search query (required)engine(str): Search engine (default: "google_light")location(str): Geographic location filternum(int): Number of results (default: 10)
raw(bool): Return raw JSON response (default: false)
Usage Examples:
General Search
{
"name": "search",
"arguments": {
"params": {
"q": "best coffee shops",
"engine": "google",
"location": "Austin, TX"
}
}
}
Weather Search
{
"name": "search",
"arguments": {
"params": {
"q": "weather in London",
"engine": "google"
}
}
}
Stock Market Search
{
"name": "search",
"arguments": {
"params": {
"q": "AAPL stock price",
"engine": "google"
}
}
}
News Search
{
"name": "search",
"arguments": {
"params": {
"q": "latest AI developments",
"engine": "google",
"tbm": "nws"
}
}
}
Raw JSON Output
{
"name": "search",
"arguments": {
"params": {
"q": "machine learning",
"engine": "google"
},
"raw": true
}
}
Supported Search Engines
- Google (
google) - Full Google search results - Google Light (
google_light) - Faster, lightweight Google results (default) - Bing (
bing) - Microsoft Bing search - Yahoo (
yahoo) - Yahoo search results - DuckDuckGo (
duckduckgo) - Privacy-focused search - Yandex (
yandex) - Russian search engine - Baidu (
baidu) - Chinese search engine - YouTube (
youtube_search) - Video search - eBay (
ebay) - Product search - Walmart (
walmart) - Product search
For a complete list, visit SerpApi Engines.
Result Types
The search tool automatically detects and formats different result types:
- Answer Box: Weather data, stock prices, knowledge graph, calculations
- Organic Results: Traditional web search results
- News Results: News articles with source and date
- Image Results: Images with thumbnails and links
- Shopping Results: Product listings with prices and sources
Results are prioritized and formatted for optimal readability.
Error Handling
The server provides comprehensive error handling:
- Rate Limiting: Automatic retry with exponential backoff
- Authentication: Clear API key validation messages
- Network Issues: Graceful degradation and error reporting
- Invalid Parameters: Helpful parameter validation
Common error responses:
{
"error": "Rate limit exceeded. Please try again later."
}
Development
Running in Development Mode
# Install dependencies
uv sync
# Run with MCP Inspector
uv run mcp dev src/server.py
# Run server directly
uv run src/server.py
Project Structure
serpapi-mcp-server/
├── src/
│ └── server.py # Main MCP server implementation
├── pyproject.toml # Project configuration
├── README.md # This file
├── LICENSE # MIT License
└── .env.example # Environment template
Usage Examples
Basic Search
# Search for information
result = await session.call_tool("search", {
"params": {
"q": "MCP protocol documentation",
"engine": "google"
}
})
Weather Query
# Get weather information
weather = await session.call_tool("search", {
"params": {
"q": "weather in San Francisco with forecast",
"engine": "google"
}
})
Stock Information
# Get stock data
stock = await session.call_tool("search", {
"params": {
"q": "Tesla stock price and market cap",
"engine": "google"
}
})
Raw JSON Response
# Get full API response
raw_data = await session.call_tool("search", {
"params": {
"q": "artificial intelligence",
"engine": "google"
},
"raw": True
})
Troubleshooting
Common Issues
"Invalid API key" Error:
- Verify your API key at serpapi.com/manage-api-key
- Check that
SERPAPI_API_KEYis set in your environment
"Rate limit exceeded" Error:
- Wait for the retry period
- Consider upgrading your SerpApi plan
- Reduce request frequency
"Module not found" Error:
- Ensure dependencies are installed:
uv installorpip install mcp serpapi python-dotenv - Check Python version compatibility (3.13+ required)
"No results found" Error:
- Try adjusting your search query
- Use a different search engine
- Check if the query is valid for the selected engine
Contributing
- Fork the repository
- Create your feature branch:
git checkout -b feature/amazing-feature - Install dependencies:
uv install - Make your changes
- Commit changes:
git commit -m 'Add amazing feature' - Push to branch:
git push origin feature/amazing-feature - Open a Pull Request
License
MIT License - see LICENSE file for details.
Recommended Servers
playwright-mcp
A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.
Magic Component Platform (MCP)
An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.
Audiense Insights MCP Server
Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.
VeyraX MCP
Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.
graphlit-mcp-server
The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.
Kagi MCP Server
An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.
E2B
Using MCP to run code via e2b.
Neon Database
MCP server for interacting with Neon Management API and databases
Exa Search
A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.
Qdrant Server
This repository is an example of how to create a MCP server for Qdrant, a vector search engine.