SerpApi MCP Server

SerpApi MCP Server

Enables searches across multiple search engines (Google, Bing, YouTube, etc.) and retrieval of parsed search results through SerpApi, allowing natural language queries to access live search engine data.

Category
Visit Server

README

<img src="https://user-images.githubusercontent.com/307597/154772945-1b7dba5f-21cf-41d0-bb2e-65b6eff4aaaf.png" width="30" height="30"/> SerpApi MCP Server

A Model Context Protocol (MCP) server implementation that integrates with SerpApi for comprehensive search engine results and data extraction.

Build Python 3.13+ MIT License

Features

  • Multi-Engine Search: Google, Bing, Yahoo, DuckDuckGo, Yandex, Baidu, YouTube, eBay, Walmart, and more
  • Real-time Weather Data: Location-based weather with forecasts via search queries
  • Stock Market Data: Company financials and market data through search integration
  • Dynamic Result Processing: Automatically detects and formats different result types
  • Raw JSON Support: Option to return full unprocessed API responses
  • Structured Results: Clean, formatted output optimized for AI consumption
  • Rate Limit Handling: Automatic retry logic with exponential backoff
  • Error Recovery: Comprehensive error handling and user feedback

Installation

git clone https://github.com/serpapi/mcp-server.git
cd mcp-server
uv sync

Configuration

Environment Variables

Required

Setup Steps

  1. Get API Key: Sign up at SerpApi and get your API key
  2. Create .env file:
    SERPAPI_API_KEY=your_api_key_here
    
  3. Run Server:
    uv run src/server.py
    

Client Configurations

Claude Desktop

Add to your claude_desktop_config.json:

{
  "mcpServers": {
    "serpapi": {
      "command": "uv",
      "args": ["run", "/path/to/mcp-server/src/server.py"],
      "env": {
        "SERPAPI_API_KEY": "your_api_key_here"
      }
    }
  }
}

VS Code

Add to your VS Code settings or .vscode/mcp.json:

{
  "inputs": [
    {
      "type": "promptString",
      "id": "apiKey",
      "description": "SerpApi API Key",
      "password": true
    }
  ],
  "servers": {
    "serpapi": {
      "command": "uv",
      "args": ["run", "src/server.py"],
      "env": {
        "SERPAPI_API_KEY": "${input:apiKey}"
      }
    }
  }
}

Cursor

For Cursor v0.48.6+, add to MCP Servers:

{
  "mcpServers": {
    "serpapi-mcp": {
      "command": "uv",
      "args": ["run", "src/server.py"],
      "env": {
        "SERPAPI_API_KEY": "YOUR-API-KEY"
      }
    }
  }
}

Available Tools

Universal Search Tool (search)

The consolidated search tool that handles all search types through a single interface.

Best for:

  • Any type of search query (web, weather, stock, images, news, shopping)
  • Unified interface across all search engines and result types
  • Both formatted output and raw JSON responses

Parameters:

  • params (Dict): Search parameters including:
    • q (str): Search query (required)
    • engine (str): Search engine (default: "google_light")
    • location (str): Geographic location filter
    • num (int): Number of results (default: 10)
  • raw (bool): Return raw JSON response (default: false)

Usage Examples:

General Search

{
  "name": "search",
  "arguments": {
    "params": {
      "q": "best coffee shops",
      "engine": "google",
      "location": "Austin, TX"
    }
  }
}

Weather Search

{
  "name": "search",
  "arguments": {
    "params": {
      "q": "weather in London",
      "engine": "google"
    }
  }
}

Stock Market Search

{
  "name": "search",
  "arguments": {
    "params": {
      "q": "AAPL stock price",
      "engine": "google"
    }
  }
}

News Search

{
  "name": "search",
  "arguments": {
    "params": {
      "q": "latest AI developments",
      "engine": "google",
      "tbm": "nws"
    }
  }
}

Raw JSON Output

{
  "name": "search",
  "arguments": {
    "params": {
      "q": "machine learning",
      "engine": "google"
    },
    "raw": true
  }
}

Supported Search Engines

  • Google (google) - Full Google search results
  • Google Light (google_light) - Faster, lightweight Google results (default)
  • Bing (bing) - Microsoft Bing search
  • Yahoo (yahoo) - Yahoo search results
  • DuckDuckGo (duckduckgo) - Privacy-focused search
  • Yandex (yandex) - Russian search engine
  • Baidu (baidu) - Chinese search engine
  • YouTube (youtube_search) - Video search
  • eBay (ebay) - Product search
  • Walmart (walmart) - Product search

For a complete list, visit SerpApi Engines.

Result Types

The search tool automatically detects and formats different result types:

  • Answer Box: Weather data, stock prices, knowledge graph, calculations
  • Organic Results: Traditional web search results
  • News Results: News articles with source and date
  • Image Results: Images with thumbnails and links
  • Shopping Results: Product listings with prices and sources

Results are prioritized and formatted for optimal readability.

Error Handling

The server provides comprehensive error handling:

  • Rate Limiting: Automatic retry with exponential backoff
  • Authentication: Clear API key validation messages
  • Network Issues: Graceful degradation and error reporting
  • Invalid Parameters: Helpful parameter validation

Common error responses:

{
  "error": "Rate limit exceeded. Please try again later."
}

Development

Running in Development Mode

# Install dependencies
uv sync

# Run with MCP Inspector
uv run mcp dev src/server.py

# Run server directly
uv run src/server.py

Project Structure

serpapi-mcp-server/
├── src/
│   └── server.py           # Main MCP server implementation
├── pyproject.toml         # Project configuration  
├── README.md              # This file
├── LICENSE               # MIT License
└── .env.example          # Environment template

Usage Examples

Basic Search

# Search for information
result = await session.call_tool("search", {
    "params": {
        "q": "MCP protocol documentation",
        "engine": "google"
    }
})

Weather Query

# Get weather information
weather = await session.call_tool("search", {
    "params": {
        "q": "weather in San Francisco with forecast",
        "engine": "google"
    }
})

Stock Information

# Get stock data
stock = await session.call_tool("search", {
    "params": {
        "q": "Tesla stock price and market cap",
        "engine": "google"
    }
})

Raw JSON Response

# Get full API response
raw_data = await session.call_tool("search", {
    "params": {
        "q": "artificial intelligence",
        "engine": "google"
    },
    "raw": True
})

Troubleshooting

Common Issues

"Invalid API key" Error:

"Rate limit exceeded" Error:

  • Wait for the retry period
  • Consider upgrading your SerpApi plan
  • Reduce request frequency

"Module not found" Error:

  • Ensure dependencies are installed: uv install or pip install mcp serpapi python-dotenv
  • Check Python version compatibility (3.13+ required)

"No results found" Error:

  • Try adjusting your search query
  • Use a different search engine
  • Check if the query is valid for the selected engine

Contributing

  1. Fork the repository
  2. Create your feature branch: git checkout -b feature/amazing-feature
  3. Install dependencies: uv install
  4. Make your changes
  5. Commit changes: git commit -m 'Add amazing feature'
  6. Push to branch: git push origin feature/amazing-feature
  7. Open a Pull Request

License

MIT License - see LICENSE file for details.

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured