SEO Research MCP

SEO Research MCP

Enables AI coding assistants to perform SEO research tasks including backlink analysis, keyword research, traffic estimation, and keyword difficulty analysis using Ahrefs data directly within IDEs.

Category
Visit Server

README

<div align="center">

SEO Research MCP

Free SEO research tools for AI-powered IDEs

Python 3.10+ License: MIT MCP

FeaturesInstallationIDE SetupAPI ReferenceContributingCredits

</div>


[!CAUTION]

⚠️ Educational Use Only

This project is for educational and research purposes only.

  • This tool interfaces with third-party services (Ahrefs, CapSolver)
  • Users must comply with all applicable terms of service
  • The authors do not endorse any use that violates third-party ToS
  • Use responsibly and at your own risk

By using this software, you acknowledge that you understand and accept these terms.


🎯 What is this?

SEO Research MCP brings powerful SEO research capabilities directly into your AI coding assistant. Using the Model Context Protocol (MCP), it connects your IDE to Ahrefs' SEO data, allowing you to:

  • Research competitor backlinks while coding
  • Generate keyword ideas without leaving your editor
  • Analyze traffic patterns for any website
  • Check keyword difficulty before creating content

✨ Features

Feature Description Example Use
🔗 Backlink Analysis Domain rating, anchor text, edu/gov links "Show me backlinks for competitor.com"
🔑 Keyword Research Generate ideas from seed keywords "Find keywords related to 'python tutorial'"
📊 Traffic Analysis Monthly traffic, top pages, countries "What's the traffic for example.com?"
📈 Keyword Difficulty KD score with full SERP breakdown "How hard is 'best laptop 2025' to rank for?"

📋 Prerequisites

Before you start, you'll need:

  1. Python 3.10 or higher

    python --version  # Should be 3.10+
    
  2. CapSolver API Key (for CAPTCHA solving)

    👉 Get your API key here


📦 Installation

Option 1: From PyPI (Recommended)

pip install seo-mcp

Or using uv:

uv pip install seo-mcp

Option 2: From Source

git clone https://github.com/egebese/seo-research-mcp.git
cd seo-research-mcp
pip install -e .

🛠️ IDE Setup Guides

Choose your IDE and follow the setup instructions:

<details> <summary><h3>🟣 Claude Desktop</h3></summary>

Step 1: Open Config File

  1. Open Claude Desktop
  2. Go to SettingsDeveloperEdit Config

Step 2: Add Configuration

Add this to your claude_desktop_config.json:

{
  "mcpServers": {
    "seo-research": {
      "command": "uvx",
      "args": ["--python", "3.10", "seo-mcp"],
      "env": {
        "CAPSOLVER_API_KEY": "YOUR_API_KEY_HERE"
      }
    }
  }
}

Step 3: Restart & Verify

  1. Restart Claude Desktop
  2. Look for the hammer/tools icon in the bottom-right corner

📁 Config file locations:

OS Path
macOS ~/Library/Application Support/Claude/claude_desktop_config.json
Windows %APPDATA%\Claude\claude_desktop_config.json

</details>

<details> <summary><h3>🔵 Claude Code (CLI)</h3></summary>

Option A: Quick Setup (CLI)

# Add the MCP server
claude mcp add seo-research --scope user -- uvx --python 3.10 seo-mcp

# Set your API key
export CAPSOLVER_API_KEY="YOUR_API_KEY_HERE"

Option B: Config File

Add to ~/.claude.json:

{
  "mcpServers": {
    "seo-research": {
      "command": "uvx",
      "args": ["--python", "3.10", "seo-mcp"],
      "env": {
        "CAPSOLVER_API_KEY": "YOUR_API_KEY_HERE"
      }
    }
  }
}

Verify Installation

claude mcp list

</details>

<details> <summary><h3>🟢 Cursor</h3></summary>

Global Setup (All Projects)

Create ~/.cursor/mcp.json:

{
  "mcpServers": {
    "seo-research": {
      "command": "uvx",
      "args": ["--python", "3.10", "seo-mcp"],
      "env": {
        "CAPSOLVER_API_KEY": "YOUR_API_KEY_HERE"
      }
    }
  }
}

Project Setup (Single Project)

Create .cursor/mcp.json in your project root with the same content.

Verify Installation

  1. Go to FilePreferencesCursor Settings
  2. Select MCP in the sidebar
  3. Check that seo-research appears under Available Tools

</details>

<details> <summary><h3>🌊 Windsurf</h3></summary>

Step 1: Open Settings

  • Mac: Cmd + Shift + P → "Open Windsurf Settings"
  • Windows/Linux: Ctrl + Shift + P → "Open Windsurf Settings"

Step 2: Add Configuration

Navigate to CascadeMCP ServersEdit raw mcp_config.json:

{
  "mcpServers": {
    "seo-research": {
      "command": "uvx",
      "args": ["--python", "3.10", "seo-mcp"],
      "env": {
        "CAPSOLVER_API_KEY": "YOUR_API_KEY_HERE"
      }
    }
  }
}

📁 Config location: ~/.codeium/windsurf/mcp_config.json

</details>

<details> <summary><h3>💜 VS Code (GitHub Copilot)</h3></summary>

⚠️ Requires VS Code 1.102+ with GitHub Copilot

Setup

Create .vscode/mcp.json in your workspace:

{
  "servers": {
    "seo-research": {
      "command": "uvx",
      "args": ["--python", "3.10", "seo-mcp"],
      "env": {
        "CAPSOLVER_API_KEY": "YOUR_API_KEY_HERE"
      }
    }
  }
}

Activate

  1. Open the .vscode/mcp.json file
  2. Click the Start button that appears
  3. In Chat view, click Tools to toggle MCP tools
  4. Use #tool_name in prompts to invoke tools

</details>

<details> <summary><h3>⚡ Zed</h3></summary>

Setup

Add to your Zed settings.json:

{
  "context_servers": {
    "seo-research": {
      "command": {
        "path": "uvx",
        "args": ["--python", "3.10", "seo-mcp"],
        "env": {
          "CAPSOLVER_API_KEY": "YOUR_API_KEY_HERE"
        }
      }
    }
  }
}

Verify

  1. Open Agent Panel settings
  2. Check the indicator dot next to seo-research
  3. Green dot = Server is active

</details>


📖 API Reference

get_backlinks_list(domain)

Get backlink data for any domain.

# Input
domain: str  # e.g., "example.com"

# Output
{
  "overview": {
    "domainRating": 76,
    "backlinks": 1500,
    "refDomains": 300
  },
  "backlinks": [
    {
      "anchor": "Example link",
      "domainRating": 76,
      "title": "Page title",
      "urlFrom": "https://source.com/page",
      "urlTo": "https://example.com/page",
      "edu": false,
      "gov": false
    }
  ]
}

keyword_generator(keyword, country?, search_engine?)

Generate keyword ideas from a seed keyword.

# Input
keyword: str        # Seed keyword
country: str        # Default: "us"
search_engine: str  # Default: "Google"

# Output
[
  {
    "keyword": "example keyword",
    "volume": 1000,
    "difficulty": 45
  }
]

get_traffic(domain_or_url, country?, mode?)

Estimate search traffic for a website.

# Input
domain_or_url: str  # Domain or full URL
country: str        # Default: "None" (all countries)
mode: str           # "subdomains" | "exact"

# Output
{
  "traffic": {
    "trafficMonthlyAvg": 50000,
    "costMontlyAvg": 25000
  },
  "top_pages": [...],
  "top_countries": [...],
  "top_keywords": [...]
}

keyword_difficulty(keyword, country?)

Get keyword difficulty score with SERP analysis.

# Input
keyword: str   # Keyword to analyze
country: str   # Default: "us"

# Output
{
  "difficulty": 45,
  "serp": [...]
}

⚙️ How It Works

┌──────────────┐     ┌──────────────┐     ┌──────────────┐     ┌──────────────┐
│     Your     │     │   CapSolver  │     │    Ahrefs    │     │   Formatted  │
│    AI IDE    │────▶│   (CAPTCHA)  │────▶│     API      │────▶│    Results   │
└──────────────┘     └──────────────┘     └──────────────┘     └──────────────┘
  1. Request → Your AI assistant calls an MCP tool
  2. CAPTCHA → CapSolver handles Cloudflare verification
  3. Data → Ahrefs API returns SEO data
  4. Response → Formatted results appear in your IDE

🐛 Troubleshooting

Problem Solution
"CapSolver API key error" Check CAPSOLVER_API_KEY is set correctly
Rate limiting Wait a few minutes, reduce request frequency
No results Domain may not be indexed by Ahrefs
Server not appearing Restart your IDE after config changes
Connection timeout Check your internet connection

🤝 Contributing

Contributions are welcome! Here's how you can help:

Ways to Contribute

  • 🐛 Report Bugs - Found an issue? Open a bug report
  • 💡 Suggest Features - Have an idea? Request a feature
  • 📝 Improve Docs - Fix typos, clarify instructions, add examples
  • 🔧 Submit Code - Bug fixes, new features, optimizations

Development Setup

# Clone the repo
git clone https://github.com/egebese/seo-research-mcp.git
cd seo-research-mcp

# Install dependencies
uv sync

# Run locally
python main.py

Pull Request Process

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/amazing-feature)
  3. Commit your changes (git commit -m 'Add amazing feature')
  4. Push to your branch (git push origin feature/amazing-feature)
  5. Open a Pull Request

Code Guidelines

  • Keep code simple and readable
  • Add comments for complex logic
  • Test your changes before submitting
  • Follow existing code style

📊 Star History

Star History Chart


📄 License

This project is licensed under the MIT License with an educational use notice.

See LICENSE for full details.


🙏 Credits

This project is a fork of seo-mcp by @cnych.

Special thanks to the original author for creating this tool.


<div align="center">

⭐ If this helps your SEO research, consider giving it a star! ⭐

</div>

Recommended Servers

playwright-mcp

playwright-mcp

A Model Context Protocol server that enables LLMs to interact with web pages through structured accessibility snapshots without requiring vision models or screenshots.

Official
Featured
TypeScript
Audiense Insights MCP Server

Audiense Insights MCP Server

Enables interaction with Audiense Insights accounts via the Model Context Protocol, facilitating the extraction and analysis of marketing insights and audience data including demographics, behavior, and influencer engagement.

Official
Featured
Local
TypeScript
Magic Component Platform (MCP)

Magic Component Platform (MCP)

An AI-powered tool that generates modern UI components from natural language descriptions, integrating with popular IDEs to streamline UI development workflow.

Official
Featured
Local
TypeScript
VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
Kagi MCP Server

Kagi MCP Server

An MCP server that integrates Kagi search capabilities with Claude AI, enabling Claude to perform real-time web searches when answering questions that require up-to-date information.

Official
Featured
Python
graphlit-mcp-server

graphlit-mcp-server

The Model Context Protocol (MCP) Server enables integration between MCP clients and the Graphlit service. Ingest anything from Slack to Gmail to podcast feeds, in addition to web crawling, into a Graphlit project - and then retrieve relevant contents from the MCP client.

Official
Featured
TypeScript
Qdrant Server

Qdrant Server

This repository is an example of how to create a MCP server for Qdrant, a vector search engine.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
E2B

E2B

Using MCP to run code via e2b.

Official
Featured