SEO Automation and Optimization

SEO Automation and Optimization

Provides SEO automation with tools for keyword research, SERP analysis, and competitor analysis through Google Ads API integration, enabling AI assistants to access these capabilities via MCP.

ccnn2509

Remote Shell Execution
Content Fetching
Database Interaction
AI Content Generation
Data & App Analysis
Visit Server

README

App SEO AI

Application for SEO automation and AI-powered optimization with Google Ads Keyword Planner integration.

Features

  • Keyword research using Google Ads API
  • SERP analysis
  • Competitor analysis
  • SEO recommendations
  • MCP (Model Context Protocol) integration for AI assistants

Prerequisites

  • Node.js (v14 or higher)
  • npm or yarn
  • Google Ads account with API access
  • Google Cloud Platform project with Google Ads API enabled

Setup

1. Clone the repository

git clone https://github.com/ccnn2509/app-seo-ai.git
cd app-seo-ai

2. Install dependencies

npm install

3. Configure environment variables

Copy the example environment file:

cp .env.example .env

Edit the .env file and fill in your Google Ads API credentials:

# Server Configuration
PORT=3000
NODE_ENV=development

# Google Ads API Configuration
GOOGLE_ADS_DEVELOPER_TOKEN=your_developer_token
GOOGLE_ADS_CLIENT_ID=your_client_id
GOOGLE_ADS_CLIENT_SECRET=your_client_secret
GOOGLE_ADS_REFRESH_TOKEN=your_refresh_token
GOOGLE_ADS_LOGIN_CUSTOMER_ID=your_customer_id_without_dashes

# SERP API Configuration (optional)
SERP_API_KEY=your_serp_api_key

4. Get Google Ads API refresh token

Run the following command to get a refresh token:

npm run get-token

This will open your browser and guide you through the OAuth2 authentication process. The refresh token will be automatically saved to your .env file.

5. Start the server

For development:

npm run dev

For production:

npm start

The server will start on the port specified in your .env file (default: 3000).

API Documentation

API documentation is available at /api-docs when the server is running:

http://localhost:3000/api-docs

MCP Integration

This project includes MCP (Model Context Protocol) integration, allowing AI assistants to use the API. The MCP configuration is in the mcp.json file.

To use this with Smithery:

  1. Go to Smithery
  2. Create a new MCP server
  3. Select the app-seo-ai repository
  4. Configure the server settings
  5. Deploy the server

Available MCP Tools

  • research_keywords - Research keywords related to a given topic or seed keyword
  • analyze_serp - Analyze a SERP (Search Engine Results Page) for a given query
  • analyze_competitors - Analyze competitors for a given keyword or domain
  • _health - Health check endpoint

Example Usage

Research Keywords

// Example request to research keywords
fetch('http://localhost:3000/api/keywords/ideas?keyword=seo%20tools&language=en')
  .then(response => response.json())
  .then(data => console.log(data));

Analyze SERP

// Example request to analyze SERP
fetch('http://localhost:3000/api/serp/analyze?query=best%20seo%20tools&location=United%20States')
  .then(response => response.json())
  .then(data => console.log(data));

Analyze Competitors

// Example request to analyze competitors
fetch('http://localhost:3000/api/competitors/analyze?domain=example.com')
  .then(response => response.json())
  .then(data => console.log(data));

License

MIT

Recommended Servers

VeyraX MCP

VeyraX MCP

Single MCP tool to connect all your favorite tools: Gmail, Calendar and 40 more.

Official
Featured
Local
E2B

E2B

Using MCP to run code via e2b.

Official
Featured
Neon Database

Neon Database

MCP server for interacting with Neon Management API and databases

Official
Featured
Exa Search

Exa Search

A Model Context Protocol (MCP) server lets AI assistants like Claude use the Exa AI Search API for web searches. This setup allows AI models to get real-time web information in a safe and controlled way.

Official
Featured
Mult Fetch MCP Server

Mult Fetch MCP Server

A versatile MCP-compliant web content fetching tool that supports multiple modes (browser/node), formats (HTML/JSON/Markdown/Text), and intelligent proxy detection, with bilingual interface (English/Chinese).

Featured
Local
AIO-MCP Server

AIO-MCP Server

🚀 All-in-one MCP server with AI search, RAG, and multi-service integrations (GitLab/Jira/Confluence/YouTube) for AI-enhanced development workflows. Folk from

Featured
Local
Persistent Knowledge Graph

Persistent Knowledge Graph

An implementation of persistent memory for Claude using a local knowledge graph, allowing the AI to remember information about users across conversations with customizable storage location.

Featured
Local
Hyperbrowser MCP Server

Hyperbrowser MCP Server

Welcome to Hyperbrowser, the Internet for AI. Hyperbrowser is the next-generation platform empowering AI agents and enabling effortless, scalable browser automation. Built specifically for AI developers, it eliminates the headaches of local infrastructure and performance bottlenecks, allowing you to

Featured
Local
React MCP

React MCP

react-mcp integrates with Claude Desktop, enabling the creation and modification of React apps based on user prompts

Featured
Local
Any OpenAI Compatible API Integrations

Any OpenAI Compatible API Integrations

Integrate Claude with Any OpenAI SDK Compatible Chat Completion API - OpenAI, Perplexity, Groq, xAI, PyroPrompts and more.

Featured